EyeLogic SDK

v1.1.15

March 2025

1 EyeLogic SDK Documentation (C++) 1

T4 Introduction L e e 1

T T ADOUL . . o o 1

1.1.2 System Requirements e 1

1.2 Installation and Getting Started L 1

1.2.1 Download Software 1

1.2.1.1 Compatibility 2

1.2.2 Installing the EyeLogic SDKon Windows 2

1.2.3 Getting Started with the Sample Code 2

1.3C0NCEPLS . . . L e 3

1.3.1 Server-Client Setup L e 3

1.3.2 Set Up a Project for your Application 3

1.3.3 Control Flow between APland server 4

1.3.4Dual PCSetup e 4

1.3.5 Example Program e 5

1.3.6 Gaze Samples L e 6

1.3.7 Shipping Your Application 6

1.4 AppendiX e 7

1.4.1 License Agreement and Warranty for SDKo oL 7

1.5 About Eyelogic e e e e e e 8

1.5.1 Contact and Support e 8

2 Namespace Index 9
2.1 Namespace List e

3 Class Index 11

3.1 Class List e 11

4 File Index 13

41 FileList e 13

5 Namespace Documentation 15

5.1 elapi Namespace Reference 15

5.1.1 Detailed Description e 15

6 Class Documentation 17

6.1 ELApi::DeviceConfig Struct Reference e 17

6.1.1 Detailed Description 17

6.2 ELApi::DeviceGeometry Struct Reference L L 18

6.2.1 Detailed Description L 18

6.3 ELApi Class Reference e 18

6.3.1 Detailed Description e 20

6.3.2 Member Enumeration Documentationo L Lo 20

6.3.2.1 DeviceEvent. e e e 20

6.3.2.2 ReturnCalibrate L 21

6.3.2.3 ReturnConnect L 21

6.3.24 ReturnNextData 21

6.3.2.5 ReturnSetActiveScreen 22

6.3.26 ReturnStart 22

6.3.2.7 ReturnStreamEyelmages L 22

6.3.2.8 ReturnValidate 23

6.3.3 Constructor & Destructor Documentation oL 23
6.3.3.1 ELAPI() . . . - o e 23

6.3.4 Member Function Documentation L 23
6.34.1calibrate() 24
6.3.4.2c0NNECH() L e 24
6.3.4.3connectRemote() e e 24

6.3.4.4 getAvailableScreens() L 24

6.3.4.5 getNextDeviceEvent() L 26

6.3.4.6 getNextEyelmage() 26

6.3.4.7 getNextGazeSample() e 27

6.3.4.8 registerDeviceEventListener() oL o 28

6.3.4.9 registerEyelmagelListener() L 28
6.3.4.10 registerGazeEventListener() Lo o 28
6.3.4.11 registerGazeSampleListener() Lo o 29
6.3.4.12requestServerList() L 29
6.3.4.13 requestTracking() 29
6.3.4.14 setActiveScreen() L e 30
6.3.4.15 streamEyelmages() e 30
6.3.4.16 unrequestTracking() 31
6.3.4.17 validate() e e e 31

6.4 ELApi::ELDeviceEventCallback Class Reference 31
6.4.1 Detailed Description e 31
6.4.2 Member Function Documentation Lo 31
6.4.2.1 onDeviceEvent() 31

6.5 ELEyelmage Struct Reference e 32
6.5.1 Detailed Description 32
6.5.2 Member Data Documentation 32
6.5.21SIZE 32

6.6 ELApi::ELEyelmageCallback Class Reference, 33
6.6.1 Detailed Description L 33
6.6.2 Member Function Documentation L 33
6.6.2.10onEyelmage() e 33

6.7 ELFixationStart Struct Reference 33
6.7.1 Detailed Description L 34

6.8 ELFixationStop Struct Reference L 34

6.8.1 Detailed Description e

6.9 ELApi::ELGazeEventCallback Class Reference
6.9.1 Detailed Description
6.9.2 Member Function Documentation Lo
6.9.2.1 onFixationStart()

6.9.2.2 onFixationStop()

6.10 ELGazeSample Struct Reference L
6.10.1 Detailed Description
6.10.2 Member Data Documentation
6.10.2.1 eyePositionLeftX

6.10.2.2 eyePositionLeftY L

6.10.2.3 eyePositionLeftZ L

6.10.2.4 eyePositionRightX

6.10.2.5 eyePositionRightY

6.10.2.6 eyePositionRightZ L

6.11 ELApi::ELGazeSampleCallback Class Reference
6.11.1 Detailed Description e
6.11.2 Member Function Documentation L
6.11.2.1 onGazeSample() e

6.12 ELApi::ELValidationPointResult Struct Reference oo

6.12.1 Detailed Description

6.13 ELApi::ELValidationResult Struct Reference oL

6.13.1 Detailed Description

6.14 ELApi::ScreenConfig Struct Referenceo

6.14.1 Detailed Description

6.15 ELApi::Serverinfo Struct Reference L

6.15.1 Detailed Description

7 File Documentation
7.1 ELApi.h File Reference . .

7.1.1 Detailed Description

7.2 ELEyelmage.h File Reference e

7.2.1 Detailed Description

7.3 ELGazeEvent.h File Reference e

7.3.1 Detailed Description

7.4 ELGazeSample.h File Reference

Index

7.4.1 Detailed Description

34
34
35
35
35
35
35
36
36
37
37
37
37
38
38
38
38
38
38
39
39
39
40
40
40
40
40

a1
41
42
42
42
42
43
43
43

45

Chapter 1

EyeLogic SDK Documentation (C++)

1.1 Introduction

1.1.1 About

The Eyelogic Software Development Kit (SDK) is a free software package for building custom applications that use
an Eyelogic eye tracking device. It provides the ability to connect to your device from any custom application via an
Application Programming Interface (API). The EyelLogic SDK is available in the following programming languages
C++, C#, C, and Python. It can also be used with any other programming language that can import dynamic link
libraries (DLLs), such as Visual Basic or Matlab.

For each directly supported language, there is a short and simple example program to help you start developing
your first Eyelogic application.

This manual describes how to use the EyelLogic API for C++ and gives a step-by-step introduction on how to start
with your own C++ program.

1.1.2 System Requirements

Please refer to the Eyelogic Server documentation for system requirements and installation instructions.

The SDK has no additional requirements. It is built for Microsoft Windows (32 bit or 64 bit) only. The included
sample projects are written for Microsoft Visual Studio 2017 or newer. Other compilers are not supported at this
time.

1.2 Installation and Getting Started

1.2.1 Download Software

To use an Eyelogic eye tracking device from within your application, you need the Eyelogic Server and the
EyelLogic SDK. Check the download page for the latest version of both packages: https://www. <«
eyelogicsolutions.com/downloads/

https://www.eyelogicsolutions.com/downloads/
https://www.eyelogicsolutions.com/downloads/

2 EyelLogic SDK Documentation (C++)

1.2.1.1 Compatibility

The software is written to support backwards compatibility, i.e. updating the EyelLogic Server software will not break
support for your device, regardless of the model. This guide assumes that you are installing the latest version of
the Eyelogic Server. Please always update to the latest server version before reporting an error to the Eyelogic
Support.

On the other hand, it is not always necessary to update the SDK and API DLLs. Since you as a programmer
would have to recompile your application with each SDK update, we have designed the SDK to allow the server to
communicate with older APl versions. So when you ship your application, simply add the EyelLogic API DLLs of the
current version to your package. It will be compatible with both current and newer versions of the server.

See Shipping Your Application for a tutorial on how to ship your application.

1.2.2 Installing the EyeLogic SDK on Windows

The Eyelogic SDK does not need to be installed. It is shipped as a .zip file that simply needs to be extracted to any
directory on your hard drive. Make sure you have user rights to that directory, e.g. any directory within C:\Program
Files or similar is problematic as it requires admin rights to access those files every time you start your program. It
is recommended to use a local user directory.

Note: The SDK has to be installed on the same computer as the server. Please see the main server manual for
help on installing the server.

After extracting the .zip file, the directory contains one subfolder for each supported programming language. Open
the cpp folder, the content should be:

* bin - contains the binary DLLs to link against

» example - contains the sample code

« include - contains the include header files for compilation

1.2.3 Getting Started with the Sample Code

In the directory, into which you unpacked the SDK EyeLogicSDK, navigate to the sub-directory cpp/example
and open the solution file A11DemoClients. sln in Visual Studio. Note, you will need Visual Studio 2017 or
newer to open this file.

You may want to choose your destination compile level (Debug/Release) in the drop down list on top of the screen.
Set it to "Debug" while developing your app. When your app is finished, set it to "Release" to create an optimized
application binary. Then compile from the menu with Build->Build Solution. You should see output similar to the
following:

1> Build started: Project: DemoClient, Configuration: Debug x64 —--—-—-——
2>—————— Build started: Project: DualPC, Configuration: Debug x64 —-————-—
3>—————- Build started: Project: Validation, Configuration: Debug x64 —-—————

1> main_democlient.cpp

2> dualpc_democlient.cpp

3> wvalidation_democlient.cpp

1> DemoClient.vcxproj —-> cpp\example\x64\Debug\DemoClient.exe
2> DualPC.vcxproj —-> cpp\example\x64\Debug\DualPC.exe

3> Validation.vcxproj -> cpp\example\x64\Debug\vValidation.exe
1> Copy dll dependencies for execution

1> 1 File copied.
2> Copy dll dependencies for execution
2> 1 File copied.
3> Copy dll dependencies for execution
3> 1 File copied.

========== Build: 3 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

1.3 Concepts 3

Before running the application check that the EyelLogic Server is running (see the EyelLogic Server manual). If the
server is running, there will be an EyelLogic icon in the Windows system tray.

On the left hand side of the Editor you will see a list of all projects/clients. The active one is highlighted in bold
(DemoClient). You can make any other demo client active (e.g. DualPC or Validation) by right-clicking on the
desired name in the list and setting it as the startup project.

Press F5 to compile and run the application.

Note that your firewall may block the connection between your program and the server. In this case, add a rule to
your firewall to allow your application to open TCP/UDP ports to an application on localhost (for Windows Defender,
just click "Accept").

If you have reached this point, you have set up your EyelLogic SDK correctly. You are now ready to start developing
your own application. See the next section Concepts for the basic programming concepts and for a tutorial on how
to deploy and ship your application.

1.3 Concepts

1.3.1 Server-Client Setup

The Eyelogic software consists of two main parts: The server and the API. The server is the neccessary driver
for your eye tracking device. It detects your device and handles the communication. The API is part of the EyeLogic
Standard Development Kit (SDK). It consists of .dll files that can be used by your application to connect to the
Eyelogic Server, start tracking and receive eye tracking data.

The server is designed to run continuously as a background process on your computer. When not actively tracking,
the server uses a negligible amount of your computer's resources. Once an Eyelogic eye tracking device is con-
nected, the Server application automatically detects it automatically and allows the user to set it up via the Server
configuration dialogue (see the Server icon in the Windows tray bar). If for some reason the server background
process is not running (the tray icon is missing), you can start the server manually from the Windows Start menu.

The APl is a set of .dll files that can be used by any custom program (called a user application). These
DLLs allow the user application to connect to the (running) server. Note that it the EyelLogic Server can run on the
same machine as the user application, or they can run on different PCs. See Dual PC Setup for how to set up the
setup with running the server and the user application running on different machines.

1.3.2 Set Up a Project for your Application

For an easy start to developing a new application, it is recommended that you copy the existing sample folder
to a new location (e.g. Eyelogic_SDK\cpp with all its contents). The sample source file already provides a fully
functional implementation. From this sample code, you can easily modify and extend the code to suit your individual
experiment.

Alternatively, you can start a new Visual Studio project from scratch. In this case, make sure that the compiler and
linker are able to find the EyelLogic include and binary files. To do this, make the following changes to the project
properties of your Visual Studio project:

» Under "C/C++", set "Additional Include Directories" to the location of <Location of your Eye«
Logic_SDK>\cpp\include.

* Under "Linker", set "Additional Library Dependencies" to <Location of your EyelLogic_S+
DK>\cpp\bin.

+ Under "Linker -> Input", add ELApi.lib to "Additional Dependencies" (for Win32-Applications, use ELApi32.+
lib).

4 EyeLogic SDK Documentation (C++)

1.3.3 Control Flow between API and server

The usual control flow between the custom application/API and the server is characterised by the following steps:

—_

. initialize: Before calling any other function the API DLLs need initializing.
2. connect to server: Establish a connection to the server via TCP.

3. find eye tracking device: Obtain the information on connected eye trackers, otherwise wait until an eye
tracker is plugged in.

4. start tracking: Request tracking. If successful, the device will start tracking and the server sends Gaze+«
Samples to the user application, see also Gaze Samples.

5. perform calibration: Request a calibration. A calibration point will appear on the screen, animated to move
across the screen. The user must fixate on this point until the calibration screen disappears. The system is
calibrated and ready for use when this process is successfully completed.

6. shut down: At the end of your experiment either stop the tracking or simply shutdown the API.

All information which is passed from the server to the user application is passed via asyncronous
callbacks. The application must register it's own implementations of these callback functions with the API
(see Example Program for a sample implementation).

Note that you need to calibrate to get valid gaze samples (see Gaze Samples). Any gaze samples reported before
the system is calibrated will not contain valid eye data.

1.3.4 Dual PC Setup

The Dual PC Setup is a special setup where the EyelLogic Server runs on a different computer than the user
application.

The most common use case for the Dual PC Setup would be the following. Running an experiment with an operator
constrolling the eye tracking device and a participant performing a task. The participant uses a different PC (which
displays the experiment) than the operator (who can control the eye tracker via the EyelLogic Server software).

The operator's computer (called the Operator PC) must have the Eyelogic driver software (the EyelLogic Server)
installed and running. The eye tracker is physically attached to a monitor that is connected to the participant's
computer (called the Experiment PC). The USB cable of the eye tracker is plugged into the USB port of the Operator
PC!

The operator can now use the server to detect the eye tracking device. On the Experiment PC, any custom applica-
tion that presents an experiment to the participant can use the EyelLogic API to remotely connect to the server. To
do this, the application should use the API calls:

1. elRequestServerList () toobtain alist of all EyeLogic servers in the local network (LAN/WLAN) which
are running and are configured to allow remote connections

2. elConnectRemote () to conntect to a specific server from that list

3. elSetActiveScreen () to set the screen connected to the Experiment PC as the active screen for eye
tracking (replacing the default main screen of the Operator PC)

Note, that a server must allow remote connections for it to be found. You can enable this in the settings of the server
window.

If the connection is successful, the client can operate as usual as if it were connected to a local server. See the
demo application "dualpc" demo application in the SDK for an example.

1.3 Concepts 5

1.3.5 Example Program

In this section, the code of the C++ example program is explained in some detail.

The file starts with an include section. It adds

#include "elapi/ELApi.h"

in order to find all neccessary definitions of the EyelLogic API.

Gaze samples and events are populated by asyncroneous callbacks. They are defined further below by deriv-
ing from the interfaces elapi: :ELApi: :ELGazeSampleCallback and elapi: :ELApi: :ELEvent«
Callback.

Events are fired whenever something changes in the external state, such as a new eye tracking device being
connected. The definition of the event receiver is:

class EventReceiver : public elapi::ELApi::ELEventCallback
{
public:

onEvent (elapi::ELApi::Event event) override { ... }

}i
and the definition of the gaze sample receiver is:

class GazeSampleReceiver : public elapi::ELApi::ELGazeSampleCallback
{

void
onGazeSample (const elapi::ELGazeSample& gazeSample) override { ... }

The example code simply prints incoming gaze samples and events to the console.

The main () method is where the application implements its control flow. It consists of the following lines of
code:

Devicelistener devicelistener;

elapi::ELApi api("Demo Client");

auto eventReceiver = std::make_unique< EventReceiver >(api);
api.registerEventListener (eventReceiver.get());

This constructs a new instance of the ELApi class. The instanciation will automatically initialize the library and it will
also be automatically deinitialized when object api goes out of scope. The call to registerEventListener
registers your own instance of the event callback with the EyelLogic API. From now on all incoming events will call
the onEvent () method from the code above.

const auto retConnect = api.connect();

Connects to the EyeLogic server. Check the return code to see if the connection was established successfully.

api.getActiveScreen(screenConfig);

6 EyelLogic SDK Documentation (C++)

and

api.getDeviceConfig(deviceConfig);

are called in order to obtain information about the active screen and the connected eye tracking device.

const auto retStart = api.requestTracking(0);

Tells the device to start tracking and the Server to start sample processing. Parameter 0 specifies the frame rate
mode. If your device is capable of multiple frame rate modes (60Hz, 120Hz or 250Hz), you can specify a different
number. The list of available frame rate modes is part of the DeviceConfig and can be obtained by calling get«
DeviceConfig(). The first frame rate mode (DeviceConfig.frameRates[0]) is the default mode, which is usually the
highest available speed mode on your system.

const auto retCalibrate = api.calibrate(0);

Performs a calibration. This method blocks until the calibration is finished - i.e. completed or cancelled. The
parameter 0 indicates the type of calibration. A list of available calibration methods is part of the DeviceConfig and
can be obtained by calling getDeviceConfig().

The example program waits for 10 seconds and then closes the connection:

api.disconnect ();
api.registerGazeSamplelListener (nullptr);
api.registerEventListener (nullptr);

The last two lines unregister the callback functions. Be sure to unregister them before destroying the API object.

1.3.6 Gaze Samples

Gaze samples are the most important data which is generated by the eye tracker. The eye tracker provides one
gaze sample per frame. Each sample contains information about the time of measurement, the position of the eyes,
the pupil radius and the point at which the user is lokking on a stimulus plane (usually a computer monitor).

1.3.7 Shipping Your Application

When you want to ship your application, be sure to include all relevant files so that it can run on different computers.
The EyeLogic functionality will only work on computers that have the EyelLogic Server installed. The installed server
must be at least be of the same version as the supplied APl DLLs (a newer server version is acceptable).

In addition to the relevant files of your application, you need to ship the contents of the bin/ folder of your language
(typically including some .dll files). Place the contents of the bin/ folder in the working directory of your application
and ship them together.

1.4 Appendix 7

1.4 Appendix

1.4.1 License Agreement and Warranty for SDK

IMPORTANT - PLEASE READ CAREFULLY:

The License Agreement is a legal agreement between you and EyelLogic GmbH and its affiliates (“EyelLogic”, “we”,
or “us”). This license agreement governs your use of the EyelLogic software and any third party software that may be
distributed therewith (collectively the “software”). EyeLogic agrees to license the software to you (personally and/or
on behalf of you employer) (collectively “you” or “your”) only if you accept all the terms contained in this license
agreement. By installing, using, copying, or distributing all or any portion of the software, you accept and agree to
be bound by all of the terms and conditions of this license agreement.

If you do not agree with any of the terms of this license agreement, do no install or use the software.

1. License Grant: Eyelogic grants you a revocable, nonexclusive, non-transferable, limited right to install and
use the application on a device owned and controlled by you, and to access and use the application on
such mobile device strictly in accordance with the terms and conditions of this licenses, the usage rules and
any service agreement associated with your device. The Software includes third party software and other
copyrighted material. Acknowledgements, licensing terms and disclaimers for such Third Party Software are
provided with the Software or contained in the Documentation, and your use of such Third Party Software is
governed by their respective terms (collectively “Related Agreements”).

2. Restriction on Use: You shall use the application strictly in accordance with the terms of the related agree-
ments and shall not:

(a) decompile, reverse engineer, disassemble, attempt to derive the source code of, or decrypt the applica-
tion,

(b) make any modification, adaption, improvement, enhancement, translation or derivative work from the
application,

(c) violate any applicable laws, rules or regulations in connection with your access or use of the application,

(d) remove, alter or obscure any proprietary notice (including any notice of copyright or trademark) of Eye«
Logic or its affiliates, partners, suppliers or the licensors of the application,

(e) use the application for any revenue generating endeavor, commercial enterprise or other purpose for
which it is not designed or intended,

(f) make the application publicly available over a network or other environment permitting access or use by
others without the written permission of EyelLogic,

(9) use the application for creating a product, service or software that is, directly or indirectly, competitive
with or | any way substitute for any services, product or software offered by Eyelogic,

(h) use any proprietary information or interfaces of EyeLogic or other intellectual property of EyelLogic in the
design, development, manufacture, licensing or distribution of any applications, accessories or devices
for use with the application.

3. Termination: EyelLogic may, in its sole and absolute discretion, at any time and for any or no reason, suspend
or terminate this license and the rights afforded to you hereunder with or without prior notice. Furthermore, if
you fail to comply with any terms and conditions of this license, then this license and any rights afforded to you
hereunder shall terminate automatically, without any notice or other action by EyeLogic. Upon the termination
of this license, you shall cease all use of the application and uninstall the application.

4. Disclaimer of Warranties: You acknowledge and agree that the application is provided on an “as is” and
“as available” basis, and that your use of or reliance upon the application and any third party content and
services accessed thereby is at you sole risk and discretion. Eyelogic and its affiliates, partners suppliers
and licensors hereby disclaim any and all representations, warranties and guaranties regarding the application
and third party content and services, whether express, implied or statutory, and including without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, furthermore,
Eyelogic and its affiliates, partners, suppliers and licensors make no warranty that

8 EyelLogic SDK Documentation (C++)

(a) The application or third party content and services will meet your requirements,

(b) The application or third party content and services will be uninterrupted, accurate, reliable timely secure
or error-free,

(c) The quality of any products, services, information or other material accessed or obtained by you through
the application will be as represented or meet your expectations, or

(d) Any errors in the application or third party content and services will be corrected.

No advice or information whether oral or written, obtained by you from EyelLogic or from the application will
create any warranty not expressly made herein or create any liability on the part of EyelLogic.

If the licensee modifies or replaces any of the third party open source software included in the software, Eye«
Logic is not obligated to provide any updates, maintenance, warranty, technical or other support or services
for the resultant modified Software. You expressly acknowledge that any failure or damage to any hardware,
software or systems as a result of such modification to the open source components of the software is
excluded from the terms of any EyelLogic warranty.

5. Limitation of liability: Under no circumstances shall EyelLogic or its affiliates, partners, suppliers or licen-
sors be liable for any indirect, incidental, consequential, special or exemplary damages arising out of or in
connection with your access or use of or inability to access or use the application and any third party content
and services, whether or not the damages ere foreseeable and whether or not EyelLogic was advices of the
possibility of such damages. Without limiting the generality of the foregoing, EyelLogic’s aggregate liability to
you (whether under contract, tort, statue or otherwise) shall not exceed the amounts actually paid by licensee
for the licensed materials. The foregoing limitations will apply even if the above stated remedy fails of its
essential purpose.

6. Confidentiality: Licensed materials are proprietary to EyelLogic and constitute EyelLogic trade and business
secrets. The licensee shall maintain licensed materials in confidence and prevent their disclosure using at
least the same degree of care it uses for its own trade and business secrets, but in no event less than a
reasonable degree of care. The licensee shall not disclose licensed materials or any part thereof to anyone
for any purpose, other than to its employees and sub-contractors, if any, for the purpose of exercising the rights
expressly granted under this agreement, provided they have in writing agreed to confidentiality obligations at
least equivalent to the obligations stated herein. The foregoing does not apply to information that a. is or
becomes generally known or available to the public without any breach of the confidentiality obligation by
licensee, b. was already known to licensee prior to the disclosure by Eyelogic, or c. was rightfully acquired
by licensee from a third party without a breach of a confidentiality obligation towards EyelLogic. In case of a
dispute, the licensee has the burden of proof that the licensed materials and/or any portion thereof fall under
one of these exceptions. Should the licensee be legally compelled to disclose any licensed materials to a third
party, such as pursuant to a mandatory order by a court or authority or any comparable action, the licensee
shall, to the extent permitted under applicable law, inform EyelLogic without undue delay and undertake all
possible measures to safeguard secrecy.

1.5 About Eyelogic

EyelLogic is a manufacturer of high precision and high quality eye tracking devices, mainly for scientific and research
use cases. Eyelogic GmbH is a spin-off of the Free University of Berlin, faculty of mathematics and computer
science and has a vast experience in image processing and computer vision.

1.5.1 Contact and Support

For technical support questions contact us via mail at: support@eyelogicsolutions.com

Eyelogic GmbH

Schlesische Str. 28

10997 Berlin Germany

www: https://www.eyelogicsolutions.com

Copyright © EyeLogic GmbH

mailto:support@eyelogicsolutions.com
https://www.eyelogicsolutions.com

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

elapi
Namespace for C++ APlcalls e

10

Namespace Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ELApi::DeviceConfig

Device configuration L
ELApi::DeviceGeometry

Geometric position of the device related to the active monitor
ELApi

Main class for communication with the EyelLogic server
ELApi::ELDeviceEventCallback

Callback interface for events related to the eye tracker
ELEyelmage

Image of the eyes captured by thedevice
ELApi::ELEyelmageCallback

Callback interface for Eyelmages
ELFixationStart

Information about a fixationstart L
ELFixationStop

Information about a fixationend L L
ELApi::ELGazeEventCallback

Callback interface for gazerelatedevents
ELGazeSample

All information about the state of the eyes at a specifictime
ELApi::ELGazeSampleCallback

Callback interface for gaze samples
ELApi::ELValidationPointResult

ValidationPointResult holds the results of the validation (total deviation between true point posi-

tion and calculated POR of the left and right eye POR in [px] and [deg]) of the validation point at

position (validationPointPxX, validationPointPxY) [px]
ELApi::ELValidationResult

ValidationResult contains one ValidationPointResult struct per validation stimulus point of the

performed valdation L
ELApi::ScreenConfig

Screen configuration L. L
ELApi::Serverlnfo

Connection information for an EyelLogic servero

17

18

18

31

32

33

33

34

34

35

38

39

12

Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

ELApi.h

The file contains the C++ prototype declaration for all functions which are neccessary to control
the EyelLogic software from an API client

............................. 41
ELEyelmage.h

The file specifies the C++ container foraneyeimage 42
ELGazeEvent.h

The file specifies the C++ container foragazeevent 42

ELGazeSample.h
The file specifies the C++ container for a gaze sample

14

File Index

Chapter 5

Namespace Documentation

5.1 elapi Namespace Reference

namespace for C++ API calls

Classes

+ class ELApi

main class for communication with the EyelLogic server
* struct ELEyelmage

contains an image of the eyes captured by the device
« struct ELFixationStart

information about a fixation start
« struct ELFixationStop

information about a fixation end
« struct ELGazeSample

contains all information about the state of the eyes at a specific time

Variables

» EL_EXPORT const double ELInvalidValue

marker for an invalid double value

5.1.1 Detailed Description

namespace for C++ API calls

16

Namespace Documentation

Chapter 6

Class Documentation

6.1 ELApi::DeviceConfig Struct Reference

Device configuration.

#include "ELApi.h"

Public Attributes

* uint64_t deviceSerial

serial number of the device as unsigned 64-bit int for a verbose format, print it as 8-digit hex number
» char deviceName [32]

name of the device, 0-terminated string
 char brandedName [64]

name of the license owner, 0-terminated string
* bool isDemoDevice

whether the device is for DEMO use only, not for public sale
* int32_t numFrameRates

number of available framerates
» uint8_t frameRates [16]

array of available framerates [Hz], use only the entries frameRates[0] ... frameRates[numFrameRates-1]
 int32_t numCalibrationMethods

number of available calibration methods
« uint8_t calibrationMethods [16]

array of available calibration methods [number of calibration points], use only the entries calibrationMethods[0] ...
calibrationMethods[numCalibrationMethods-1]

6.1.1 Detailed Description

Device configuration.

18 Class Documentation

6.2 ELApi::DeviceGeometry Struct Reference

Geometric position of the device related to the active monitor.

#include "ELApi.h"

Public Attributes

* double mmBelowScreen

vertical distance between the lowest pixel on the display and the upper edge of the eye tracker
» double mmTrackerInFrontOfScreen

horizontal distance between the front of the screen and the front edge of the eye tracker

6.2.1 Detailed Description

Geometric position of the device related to the active monitor.

6.3 ELApi Class Reference

main class for communication with the EyelLogic server

#include "ELApi.h"

Classes

« struct DeviceConfig
Device configuration.
« struct DeviceGeometry
Geometric position of the device related to the active monitor.
+ class ELDeviceEventCallback
Callback interface for events related to the eye tracker.
« class ELEyelmageCallback
Callback interface for Eyelmages.
+ class ELGazeEventCallback
Callback interface for gaze related events.
+ class ELGazeSampleCallback
Callback interface for gaze samples.
« struct ELValidationPointResult

ValidationPointResult holds the results of the validation (total deviation between true point position and calculated
POR of the left and right eye POR in [px] and [deg]) of the validation point at position (validationPointPxX, validation+
PointPxY') [px].

« struct ELValidationResult

ValidationResult contains one ValidationPointResult struct per validation stimulus point of the performed valdation.
« struct ScreenConfig

Screen configuration.
« struct Serverinfo

connection information for an Eyelogic server

6.3 ELApi Class Reference 19

Public Types

enum DeviceEvent {
SCREEN_CHANGED, CONNECTION_CLOSED, DEVICE_CONNECTED, DEVICE_DISCONNECTED,
TRACKING_STOPPED }

event reated to the state of the eye tracker
enum ReturnConnect { SUCCESS, FAILURE, VERSION_MISMATCH }

return values of connect()
enum ReturnSetActiveScreen { SUCCESS, NOT_FOUND, FAILURE }

return values of setActiveScreen()
enum ReturnStreamEyelmages { SUCCESS, NOT_CONNECTED, REMOTE_CONNECTION, FAILURE }

Return values of the streamEyelmages() function.
enum ReturnNextData { SUCCESS, TIMEOUT, CONNECTION_CLOSED }

Return values of the getNextEvent/getNextGazeSample functions.
enum ReturnStart {
SUCCESS, NOT_CONNECTED, DEVICE_MISSING, INVALID_ FRAMERATE_MODE,
ALREADY_RUNNING_DIFFERENT_FRAMERATE, FAILURE }

return values of requestTracking()
enum ReturnCalibrate {
SUCCESS, NOT_CONNECTED, NOT_TRACKING, INVALID_CALIBRATION_MODE,
ALREADY_BUSY, FAILURE }

return values of calibrate()
enum ReturnValidate {
SUCCESS, NOT_CONNECTED, NOT_TRACKING, NOT_CALIBRATED,
ALREADY_BUSY, FAILURE }

return values of validate()

Public Member Functions

EL_EXPORT STDCALL ELApi (const char xclientName)

constructor

EL_EXPORT STDCALL ~ELApi ()
destructor

ELApi (const ELApi &)=delete

ELApi & operator= (const ELApi &)=delete

ELApi (ELApi &&)=delete

ELApi & operator= (ELApi &&)=delete

EL_EXPORT void STDCALL registerDeviceEventListener (ELDeviceEventCallback xcallback)
Registers the event listener. An existing listener will be overwritten.

EL_EXPORT void STDCALL registerGazeEventListener (ELGazeEventCallback xcallback)
Registers the event listener. An existing listener will be overwritten.

EL_EXPORT void STDCALL registerGazeSampleListener (ELGazeSampleCallback *callback)
Registers the gaze sample listener. An existing listener will be overwritten.

EL_EXPORT void STDCALL registerEyelmageListener (ELEyelmageCallback xcallback)

Registers the eye image listener. An existing listener will be overwritten.

EL_EXPORT ReturnConnect STDCALL connect ()
initialize connection to the server (method is blocking until connection established). The connection is only established
for a local server (running on this machine). For connections to a remote server,

EL_EXPORT ReturnConnect STDCALL connectRemote (Serverinfo server)

initialize connection to a remote server (method is blocking until connection established)
EL_EXPORT int32_t STDCALL requestServerList (int32_t blockingDurationMS, Serverinfo xserverList,
int32_t serverListLength)

20

Class Documentation

6.3.1

Ping all running EyelLogic servers in the local network and wait some time for their response.
EL_EXPORT void STDCALL disconnect ()
closes connection to the server
EL_EXPORT bool STDCALL isConnected () const
whether a connection to the server is established
EL_EXPORT void STDCALL getActiveScreen (ScreenConfig &screenConfig) const
obtain configuration of active screen
EL_EXPORT int32_t STDCALL getAvailableScreens (ScreenConfig xscreenConfig, int32_t numScreen«
Configs) const
Get a list of screens connected to the local machine. If there are more screens than 'numScreenConfigs' found, then
only the first ‘numScreenConfigs' ones are filled.
EL_EXPORT ReturnSetActiveScreen STDCALL setActiveScreen (const char xscreenID, DeviceGeometry
deviceGeometry)
Make a screen connected to this machine to the active screen.
EL_EXPORT void STDCALL getDeviceConfig (DeviceConfig &deviceConfig) const
obtain configuration of active device
EL_EXPORT ReturnStreamEyelmages STDCALL streamEyelmages (bool enable)
Enabled/disables eye image stream. If enabled, eye images are received from eye image listeners,.
EL_EXPORT ReturnNextData STDCALL getNextDeviceEvent (DeviceEvent &event, int32_t timeoutMillis)
Obtains the next unread event or blocks until a new event occurs or the given timeout is reached.
EL_EXPORT ReturnNextData STDCALL getNextGazeSample (ELGazeSample &gazeSample, int32_«
t timeoutMillis)
Obtains the next unread gazeSample or blocks until a new GazeSample is received or the given timeout is reached.
EL_EXPORT ReturnNextData STDCALL getNextEyelmage (ELEyelmage &eyelmage, int32_t timeoutMillis)
Obtains the next unread eye image or blocks until a new eye image is received or the given timeout is reached.
EL_EXPORT ReturnStart STDCALL requestTracking (int32_t frameRateModelnd)
request tracking
EL_EXPORT void STDCALL unrequestTracking ()

unrequest tracking
EL_EXPORT ReturnCalibrate STDCALL calibrate (int32_t calibrationModelnd)

perform calibration (method is blocking until calibration finished)
EL_EXPORT void STDCALL abortCalibValidation ()

abort a running calibration / validation
EL_EXPORT ReturnValidate STDCALL validate (ELValidationResult &validationResult)

perform validation (method is blocking until validation finished)

Detailed Description

main class for communication with the Eyelogic server

6.3.2 Member Enumeration Documentation

6.3.2.1 DeviceEvent

enum DeviceEvent [strong]

event reated to the state of the eye tracker

6.3 ELApi Class Reference

21

Enumerator

SCREEN_CHANGED

active screen or resolution has changed

CONNECTION_CLOSED

connection to server has closed

DEVICE_CONNECTED

a new device has connected

DEVICE_DISCONNECTED

actual device has disconnected

TRACKING_STOPPED

tracking has stopped

6.3.2.2 ReturnCalibrate

enum ReturnCalibrate [strong]

return values of calibrate()

Enumerator

SUCCESS | start calibration successful

NOT_CONNECTED | cannot calibrate: not connected to the server

NOT_TRACKING | cannot calibrate: no device found or tracking not started

INVALID_CALIBRATION_MODE | cannot start calibration: calibration mode is invalid or not supported

ALREADY_BUSY | cannot start calibration: calibration or validation is already in progress

FAILURE | calibration failure

6.3.2.3 ReturnConnect

enum ReturnConnect [strong]

return values of connect()

Enumerator

SUCCESS | connection successully established

FAILURE | connection could not be established: the server can not be found or is not
responding

VERSION_MISMATCH | connection could not be established: APl is build on a newer version than the
server. Update the EyelLogicServer to the newest version.

6.3.2.4 ReturnNextData

enum ReturnNextData [strong]

Return values of the getNextEvent/getNextGazeSample functions.

22 Class Documentation

Enumerator

SUCCESS | new event or new GazeSample received

TIMEOUT | timeout reached, no new event/GazeSample received

CONNECTION_CLOSED | connection to server closed, no new event/GazeSample received

6.3.2.5 ReturnSetActiveScreen

enum ReturnSetActiveScreen [strong]

return values of setActiveScreen()

Enumerator

SUCCESS | active screen was set
NOT_FOUND | specified screen name was not found as a name of an available monitor

FAILURE | active screen could not be changed

6.3.2.6 ReturnStart

enum ReturnStart [strong]

return values of requestTracking()

Enumerator
SUCCESS | start tracking successful
NOT_CONNECTED | not connected to the server
DEVICE_MISSING | cannot start tracking: no device found
INVALID_FRAMERATE_MODE | cannot start tracking: framerate mode is invalid or not
supported
ALREADY_RUNNING_DIFFERENT_FRAMERATE | tracking already ongoing, but frame rate mode is
different
FAILURE | some general failure occurred

6.3.2.7 ReturnStreamEyelmages

enum ReturnStreamEyeImages [strong]

Return values of the streamEyelmages() function.

6.3 ELApi Class Reference

23

Enumerator

SUCCESS | setting streaming of eye images was successful

NOT_CONNECTED | failed, not connected to the server

REMOTE_CONNECTION | cannot stream eye images when connection to the server is a remote connection

FAILURE | failure when trying to set eye image stream

6.3.2.8 ReturnValidate

enum ReturnValidate [strong]

return values of validate()

Enumerator

SUCCESS | start validation successful

NOT_CONNECTED | cannot validate: not connected to the server

NOT_TRACKING | cannot validate: no device found or tracking not started

NOT_CALIBRATED | cannot start validation: validation mode is invalid or not supported

ALREADY_BUSY | cannot start validation: calibration or validation is already in progress

FAILURE | validation failure

6.3.3 Constructor & Destructor Documentation

6.3.3.1 ELApi()

EL_EXPORT STDCALL ELApi (

const char *x clientName)

constructor

Parameters

clientName | string identifier of the client (shown in the server tool window), may be null

6.3.4 Member Function Documentation

24 Class Documentation

6.3.4.1 calibrate()

EL_EXPORT ReturnCalibrate STDCALL calibrate (
int32_t calibrationModeInd)

perform calibration (method is blocking until calibration finished)

Parameters

calibrationModelnd ‘ index of the requested calibration method (0 ... #calibrationMethods-1) ‘

6.3.4.2 connect()

EL_EXPORT ReturnConnect STDCALL connect ()

initialize connection to the server (method is blocking until connection established). The connection is only estab-
lished for a local server (running on this machine). For connections to a remote server,

See also

connectRemote().

6.3.4.3 connectRemote()

EL_EXPORT ReturnConnect STDCALL connectRemote (

ServerInfo server)

initialize connection to a remote server (method is blocking until connection established)

Parameters

‘ server‘ Server to connect to ‘

See also

acquireServerList() to obtain IP address and port of a remote server

6.3.4.4 getAvailableScreens()

EL_EXPORT int32_t STDCALL getAvailableScreens (
ScreenConfig * screenConfig,

int32_t numScreenConfigs) const

6.3 ELApi Class Reference 25

Get a list of screens connected to the local machine. If there are more screens than 'numScreenConfigs' found,
then only the first 'numScreenConfigs' ones are filled.

26 Class Documentation

Parameters

screenConfig pre-allocated array, will be filled with screen configurations

numScreenConfigs | number of entries of screenConfig

Returns

number of filled screen configurations. will be <= numScreenConfigs

6.3.4.5 getNextDeviceEvent()

EL_EXPORT ReturnNextData STDCALL getNextDeviceEvent (
DeviceEvent & event,

int32_t timeoutMillis)
Obtains the next unread event or blocks until a new event occurs or the given timeout is reached.

The last incoming event is buffered internally and can be obtained by calling this method in a consecutive order. If
there is no new event, the method blocks until an event occurs or the given timeout is reached. The method returns
SUCCESS if and only if a new event is provided which was not returned before. Therefore, by checking the return
value, you can assure to not handle any event twice.

If you want to catch events in a loop, be careful to not wait too long between the calls to this method. Otherwise, you

may miss events. If you want to be 100% sure to not miss any event, consider to use the ELDeviceEventCallback
mechanism.

See also

registerEventListener

Parameters

event If this method returns SUCCESS, this data structure is filled with the new (yet unhandled) event.
In all other cases, this data structure is filled with the event which was returned last.
timeoutMillis | duration in milliseconds, method returns at the latest after this time. May be 0 if the method
should return immediatly.

Returns

whether an event was received (SUCCESS) or the method terminated without a new event

6.3.4.6 getNextEyelmage()

EL_EXPORT ReturnNextData STDCALL getNextEyeImage (
ELEyeImage & eyelImage,
int32_t timeoutMillis)

6.3 ELApi Class Reference 27

Obtains the next unread eye image or blocks until a new eye image is received or the given timeout is reached.

The last incoming eye image is buffered internally and can be obtained by calling this method in a consecutive order.
If there is no new eye image, the method blocks until an eye image is received or the given timeout is reached. The
method returns SUCCESS if and only if a new eye image is provided which was not returned before. Therefore, by
checking the return value, you can assure to not handle any eye image twice.

Parameters

eyelmage If this method returns SUCCESS, this data structure is filled with the new (yet unhandled) eye
image. In all other cases, this data structure is filled with the eye image which was returned last.

timeoutMillis | duration in milliseconds, method returns at the latest after this time. May be 0 if the method
should return immediatly.

Returns

whether an eye iage was received (SUCCESS)

6.3.4.7 getNextGazeSample()

EL_EXPORT ReturnNextData STDCALL getNextGazeSample (
ELGazeSample & gazeSample,
int32_t timeoutMillis)

Obtains the next unread gazeSample or blocks until a new GazeSample is received or the given timeout is reached.

The last incoming GazeSample is buffered internally and can be obtained by calling this method in a consecutive
order. If there is no new GazeSample, the method blocks until a GazeSample arrives or the given timeout is
reached. The method returns SUCCESS if and only if a new GazeSample is provided which was not returned
before. Therefore, by checking the return value, you can assure to not handle any GazeSample twice.

If you want to catch GazeSamples in a loop, be careful to not wait too long between the calls to this method (at

least once per frame). Otherwise, you may miss GazeSamples. If you want to be 100% sure to not miss any
GazeSample, consider to use the ELGazeSampleCallback mechanism.

See also

registerGazeSampleListener

Parameters

gazeSample | If this method returns SUCCESS, this data structure is filled with the new (yet unhandled)
GazeSample. In all other cases, this data structure is filled with the GazeSample which was
returned last.

timeoutMillis | duration in milliseconds, method returns at the latest after this time. May be 0 if the method
should return immediatly.

28 Class Documentation

Returns

whether a GazeSample was received (SUCCESS) or the method terminated without a new GazeSample

6.3.4.8 registerDeviceEventListener()

EL_EXPORT void STDCALL registerDeviceEventListener (
ELDeviceEventCallback * callback)

Registers the event listener. An existing listener will be overwritten.

Parameters

callback | this instance will be notified of all events published by the ELApi. If null, the current callback is
removed/unregistered. Ensure that the listener is unregistered before its destruction.

6.3.4.9 registerEyelmageListener()

EL_EXPORT void STDCALL registerEyeImagelListener (
ELEyeImageCallback * callback)

Registers the eye image listener. An existing listener will be overwritten.

Note: Eye images must be enabled to receive those callbacks

See also

streamEyelmages()

Parameters

callback | this instance will be notified of all eye images published by the ELApi. If null, the current callback is
removed/unregistered. Ensure that the listener is unregistered before its destruction.

6.3.4.10 registerGazeEventListener()

EL_EXPORT void STDCALL registerGazeEventListener (
ELGazeEventCallback * callback)

Registers the event listener. An existing listener will be overwritten.

6.3 ELApi Class Reference 29

Parameters

callback | this instance will be notified of all events published by the ELApi. If null, the current callback is
removed/unregistered. Ensure that the listener is unregistered before its destruction.

6.3.4.11 registerGazeSampleListener()

EL_EXPORT void STDCALL registerGazeSampleListener (
ELGazeSampleCallback * callback)

Registers the gaze sample listener. An existing listener will be overwritten.

Parameters

callback | this instance will be notified of all gaze samples published by the ELApi. If null, the current callback is
removed/unregistered. Ensure that the listener is unregistered before its destruction.

6.3.4.12 requestServerList()

EL_EXPORT int32_t STDCALL requestServerList (
int32_t blockingDurationMsS,
ServerInfo * serverList,

int32_t serverListLength)

Ping all running EyelLogic servers in the local network and wait some time for their response.

Parameters

blockingDurationMS | waiting duration in milliseconds. Method returns after this time, or if 'serverListLength'
many servers responded.

serverList pre-allocated array of length 'serverListLength'. Will be filled with responding EyeLogic
servers.
serverListLength Lenght of pre-allocated serverList array
Returns

number of entries, written to the server list

6.3.4.13 requestTracking()

EL_EXPORT ReturnStart STDCALL requestTracking (
int32_t frameRateModeInd)

30 Class Documentation

request tracking

If tracking is not yet ongoing, tracking is started in the device. If tracking is already running (e.g. started from another
client) with the same frame-rate as requested, all gaze samples are reported to this client as well.

Parameters

‘ frameRateModelnd | index of the requested frame rate mode (0 ... #rameRateModes-1) ‘

6.3.4.14 setActiveScreen()

EL_EXPORT ReturnSetActiveScreen STDCALL setActiveScreen (
const char *x screenID,

DeviceGeometry deviceGeometry)
Make a screen connected to this machine to the active screen.

Recording is from now on performed on the new active screen. Remember to perform a calibration on the new
screen, otherwise it remains in an uncalibrated state.

Parameters

screenlD ID of the new active screen on this machine (even works if the connection to the server is
remote). If null, the primary screen of this machine is set as active.

deviceGeometry | Geometry of the device which is mounted to the screen.

Returns

success/error code

6.3.4.15 streamEyelmages()

EL_EXPORT ReturnStreamEyeImages STDCALL streamEyeImages (
bool enable)

Enabled/disables eye image stream. If enabled, eye images are received from eye image listeners,.

See also

registerEyelmageListener() and

getNextEyelmage(). Note, that enabling eye images can lead to noticable CPU load and a loss of gaze
samples. Always disable it before running your experiment. Eye images can not be received via remote
connections.

6.4 ELApi::ELDeviceEventCallback Class Reference 31

6.3.4.16 unrequestTracking()

EL_EXPORT void STDCALL unrequestTracking ()
unrequest tracking

Note that the tracking device may continue if other processes still request tracking. Check the Eyelogic server
window to observe the actual state.

6.3.4.17 validate()

EL_EXPORT ReturnValidate STDCALL validate (
ELValidationResult & validationResult)

perform validation (method is blocking until validation finished)

Parameters

validationResult | upon ReturnValidate::SUCCESS this struct will be filled with the validation results - may
contain ELInvalidValues. Contains all ELInvalidValues for all other return values.

6.4 ELApi::ELDeviceEventCallback Class Reference

Callback interface for events related to the eye tracker.

#include "ELApi.h"

Public Member Functions

« virtual void STDCALL onDeviceEvent (ELApi::DeviceEvent event)=0

Callback function for new events.

6.4.1 Detailed Description

Callback interface for events related to the eye tracker.

6.4.2 Member Function Documentation

6.4.2.1 onDeviceEvent()

virtual void STDCALL onDeviceEvent (

ELApi::DeviceEvent event) [pure virtual]

Callback function for new events.

32

Class Documentation

Parameters

\ event \ The occurred event

6.5 ELEyelmage Struct Reference

contains an image of the eyes captured by the device

#include "ELEyeImage.h"

Public Attributes

* uint8_t data [SIZE]

image buffer, stores all pixels as RGB value (3 bytes per pixel)

Static Public Attributes

» static const int32_t WIDTH = 300

width of the image in pixels
 static const int32_t HEIGHT = 90

height of the image in pixels
« static const int32_t SIZE = WIDTH x HEIGHT x 3

size of the image buffer

6.5.1 Detailed Description

contains an image of the eyes captured by the device

6.5.2 Member Data Documentation

6.5.2.1 SIZE

const int32_t SIZE = WIDTH * HEIGHT *x 3 [static]

size of the image buffer

See also

data in byte

6.7 ELFixationStart Struct Reference 33

6.6 ELApi::ELEyelmageCallback Class Reference

Callback interface for Eyelmages.

#include "ELApi.h"

Public Member Functions
« virtual void STDCALL onEyelmage (const ELEyelmage &eyelmage)=0

Callback function for new eye images. Note that this callback is only invoked for direct connections, not for remote
connections.

6.6.1 Detailed Description

Callback interface for Eyelmages.

6.6.2 Member Function Documentation

6.6.2.1 onEyelmage()

virtual void STDCALL onEyelImage (

const ELEyelImage & eyelImage) [pure virtuall]

Callback function for new eye images. Note that this callback is only invoked for direct connections, not for remote
connections.

Parameters

‘ eye ‘ image incoming eye image

6.7 ELFixationStart Struct Reference

information about a fixation start

#include "ELGazeEvent.h"

Public Attributes

* int64_t timestampMicroSec

timepoint when the fixation started in microseconds after EPOCH
* int32_t index

34 Class Documentation

index of the corresponding GazeSample at which the fixation started
» double porX

X coordinate of binocular point of regard on the stimulus plane at when the fixation started.
+ double porY

Y coordinate of binocular point of regard on the stimulus plane at when the fixation started.

6.7.1 Detailed Description

information about a fixation start

6.8 ELFixationStop Struct Reference

information about a fixation end

#include "ELGazeEvent.h"

Public Attributes

* int64_t timestampMicroSec

timepoint when the fixation ended in microseconds after EPOCH
* int64_t timestampStartMicroSec

timepoint when the fixation started in microseconds after EPOCH
+ int32_t index

index of the corresponding GazeSample at which the fixation ended
» int32_t indexStart

index of the corresponding GazeSample at which the fixation started
» double porX

X coordinate of binocular point of regard on the stimulus plane of the overal fixation (average over the whole fixation
period)
» double porY

Y coordinate of binocular point of regard on the stimulus plane of the overal fixation (average over the whole fixation
period)

6.8.1 Detailed Description

information about a fixation end

6.9 ELApi::ELGazeEventCallback Class Reference

Callback interface for gaze related events.

#include "ELApi.h"

6.10 ELGazeSample Struct Reference

Public Member Functions

« virtual void STDCALL onFixationStart (ELFixationStart fixation)=0

Callback function for a detected fixation start.
« virtual void STDCALL onFixationStop (ELFixationStop fixation)=0

Callback function for a detected fixation stop.

6.9.1 Detailed Description

Callback interface for gaze related events.

6.9.2 Member Function Documentation

6.9.2.1 onFixationStart()

virtual void STDCALL onFixationStart (

ElLFixationStart fixation) [pure virtual]

Callback function for a detected fixation start.

Parameters

fixation | info about the fixation

6.9.2.2 onFixationStop()

virtual void STDCALL onFixationStop (

ELFixationStop fixation) [pure virtual]

Callback function for a detected fixation stop.

Parameters

fixation | info about the fixation

6.10 ELGazeSample Struct Reference

contains all information about the state of the eyes at a specific time

#include "ELGazeSample.h"

36 Class Documentation

Public Attributes

* int64_t timestampMicroSec
timepoint when data was acquired in microseconds after EPOCH
* int32_t index
increasing GazeSample index
+ double porRawX
X coordinate of binocular point of regard on the stimulus plane, check porRawX != InvalidValue before using it.
» double porRawY

Y coordinate of binocular point of regard on the stimulus plane, check porRawX != InvalidValue also before using
porRawy.

» double porFilteredX
X coordinate of filtered binocular point of regard on the stimulus plane, check porFilteredX != InvalidValue before using
it.

+ double porFilteredY

Y coordinate of filtered binocular point of regard on the stimulus plane, also check porFilteredX != InvalidValue before
using porFilteredY.

» double porLeftX

X coordinate of monocular point of regard of the left eye, check porLeftX I= InvalidValue before using it.
+ double porLeftY

Y coordinate of monocular point of regard of the left eye, also check porLeftX I= InvalidValue before using porLetftY.
» double eyePositionLeftX

position of the left eye in device coordinates, unit is mm
» double eyePositionLeftY

position of the left eye in device coordinates, unitis mm
+ double eyePositionLeftZ

position of the left eye in device coordinates, unit is mm
» double pupilRadiusLeft

radius of the left pupil in mm or InvalidValue if eye was not found
+ double porRightX

X coordinate of monocular point of regard of the right eye, check porRightX != InvalidValue before using it.
+ double porRightY

Y coordinate of monocular point of regard of the right eye, also check porRightX != InvalidValue before using por«
RightY.
+ double eyePositionRightX

position of the right eye in device coordinates, unit is mm:
+ double eyePositionRightY

position of the right eye in device coordinates, unit is mm:
+ double eyePositionRightZ

position of the right eye in device coordinates, unit is mm:
+ double pupilRadiusRight

radius of the right pupil in mm or InvalidValue if eye was not found

6.10.1 Detailed Description

contains all information about the state of the eyes at a specific time

6.10.2 Member Data Documentation

6.10 ELGazeSample Struct Reference

37

6.10.2.1 eyePositionLeftX

double eyePositionLeftX

position of the left eye in device coordinates, unit is mm

* (0, 0, 0) is in the center of the device

+ x-coordinate: positive towards the right side of the screen

check eyePositionLeftX != InvalidValue before using it

6.10.2.2 eyePositionLeftY

double eyePositionLeftY

position of the left eye in device coordinates, unit is mm

* (0, 0, 0) is in the center of the device

« y-coordinate: positive towards the top of the screen

check eyePositionLeftX != InvalidValue before using eyePositionLeftY

6.10.2.3 eyePositionLeftZ

double eyePositionLeftZ

position of the left eye in device coordinates, unit is mm

* (0, 0, 0) is in the center of the device

» z-coordinate: distance in front of the screen

check eyePositionLeftX != InvalidValue before using eyePositionLeftZ

6.10.2.4 eyePositionRightX

double eyePositionRightX

position of the right eye in device coordinates, unit is mm:

* (0, 0, 0) is in the center of the device

+ x-coordinate: positive towards the right side of the screen

check eyePositionRightX != InvalidValue before using it

38 Class Documentation

6.10.2.5 eyePositionRightY

double eyePositionRightY

position of the right eye in device coordinates, unit is mm:

* (0, 0, 0) is in the center of the device

+ y-coordinate: positive towards the top of the screen

check eyePositionRightX != InvalidValue before using eyePositionRightY

6.10.2.6 eyePositionRightZ

double eyePositionRightZ

position of the right eye in device coordinates, unit is mm:

* (0, 0, 0) is in the center of the device

» z-coordinate: distance in front of the screen

check eyePositionRightX != InvalidValue before using eyePositionRightZ

6.11 ELApi::ELGazeSampleCallback Class Reference

Callback interface for gaze samples.

#include "ELApi.h"

Public Member Functions

« virtual void STDCALL onGazeSample (const ELGazeSample &gazeSample)=0

Callback function for new gaze samples.

6.11.1 Detailed Description

Callback interface for gaze samples.

6.11.2 Member Function Documentation

6.11.2.1 onGazeSample()

virtual void STDCALL onGazeSample (

const ELGazeSample & gazeSample) [pure virtual]

Callback function for new gaze samples.

6.12 ELApi::ELValidationPointResult Struct Reference 39

Parameters

gazeSample | incoming gaze sample

6.12 ELApi::ELValidationPointResult Struct Reference

ValidationPointResult holds the results of the validation (total deviation between true point position and calcu-
lated POR of the left and right eye POR in [px] and [deg]) of the validation point at position (validationPointPxX,
validationPointPxY) [px].

#include "ELApi.h"

Public Attributes

« double validationPointPxX

ELInvalidValue or x-coordinate of stimulus point position.
+ double validationPointPxY

ELInvalidValue or y-coordinate of stimulus point position.
+ double meanDeviationLeftPx

ELInvalidValue or mean deviation between left eye POR and stimulus position in [px] in the stimulus plane.
+ double meanDeviationLeftDeg

ELInvalidValue or mean deviation of left eye gaze direction in [deg] in the 3-D world system.
» double meanDeviationRightPx

ELInvalidValue or mean deviation between right eye POR and stimulus position in [px] in the stimulus plane.
» double meanDeviationRightDeg

ELInvalidValue or mean deviation of right eye gaze direction in [deg] in the 3-D world system.

6.12.1 Detailed Description

ValidationPointResult holds the results of the validation (total deviation between true point position and calcu-
lated POR of the left and right eye POR in [px] and [deg]) of the validation point at position (validationPointPxX,
validationPointPxY) [px].

The stimulus point position and deviation [px] are given in the 2D stimulus coordinate system originating in the top
left corner of the stimulus.

The deviation [deg] corresponds to the total angular deviation between the measured gaze direction from the ground
truth gaze direction as determined according to the measured eye position.

Note: All data fields may be ELInvalidValue. All pairs validationPointPxX/-Y, meanDeviationLeftDeg/-Px and mean«
DeviationRightDeg-/Px are always either both valid or both ELInvalidValue.

6.13 ELApi::ELValidationResult Struct Reference

ValidationResult contains one ValidationPointResult struct per validation stimulus point of the performed valdation.

#include "ELApi.h"

40 Class Documentation

Public Attributes
» ELValidationPointResult pointsData [4]

6.13.1 Detailed Description

ValidationResult contains one ValidationPointResult struct per validation stimulus point of the performed valdation.

6.14 ELApi::ScreenConfig Struct Reference

Screen configuration.

#include "ELApi.h"

Public Attributes

* bool localMachine

whether the screen is connected to the this machine
» charid [32]

identifier name of the screen (0-terminated string)
» char name [32]

descriptive name of the screen (0-terminated string)
* int32_t resolutionX

raw screen X resolution [px]
* int32_t resolutionY

raw screen Y resolution [px]
+ double physicalSizeX_mm

horizontal physical dimension of the screen [mm]
» double physicalSizeY_mm

vertical physical dimension of the screen [mm]

6.14.1 Detailed Description

Screen configuration.

6.15 ELApi::Serverinfo Struct Reference

connection information for an Eyelogic server

#include "ELApi.h"

Public Attributes
» charip [16]

IP address of server as 0-terminated string.
» uint16_t port
port of server

6.15.1 Detailed Description

connection information for an Eyelogic server

Chapter 7

File Documentation

7.1 ELApi.h File Reference

The file contains the C++ prototype declaration for all functions which are neccessary to control the Eyelogic
software from an API client.

#include "ELGazeSample.h"
#include "ELEyeImage.h"
#include "ELGazeEvent.h"
#include <memory>

Classes

+ class ELApi
main class for communication with the EyelLogic server
+ class ELApi::ELDeviceEventCallback
Callback interface for events related to the eye tracker.
« class ELApi::ELGazeEventCallback
Callback interface for gaze related events.
+ class ELApi::ELGazeSampleCallback
Callback interface for gaze samples.
« class ELApi::ELEyelmageCallback
Callback interface for Eyelmages.
« struct ELApi::Serverinfo
connection information for an EyelLogic server
» struct ELApi::ScreenConfig
Screen configuration.
+ struct ELApi::DeviceGeometry
Geometric position of the device related to the active monitor.
« struct ELApi::DeviceConfig
Device configuration.
« struct ELApi::ELValidationPointResult

ValidationPointResult holds the results of the validation (total deviation between true point position and calculated
POR of the left and right eye POR in [px] and [deg]) of the validation point at position (validationPointPxX, validation«
PointPxY') [px].

« struct ELApi::ELValidationResult

ValidationResult contains one ValidationPointResult struct per validation stimulus point of the performed valdation.

42 File Documentation

Namespaces

* elapi

namespace for C++ APl calls

7.1.1 Detailed Description

The file contains the C++ prototype declaration for all functions which are neccessary to control the Eyelogic
software from an API client.

7.2 ELEyelmage.h File Reference

The file specifies the C++ container for an eye image.

#include "ELExports.hpp"
#include <cinttypes>

Classes

« struct ELEyelmage

contains an image of the eyes captured by the device

Namespaces

* elapi

namespace for C++ API calls

7.2.1 Detailed Description

The file specifies the C++ container for an eye image.

7.3 ELGazeEvent.h File Reference

The file specifies the C++ container for a gaze event.

#include "ELExports.hpp"
#include <cinttypes>

Classes

« struct ELFixationStart

information about a fixation start
« struct ELFixationStop

information about a fixation end

7.4 ELGazeSample.h File Reference

43

Namespaces

* elapi

namespace for C++ APl calls

7.3.1 Detailed Description

The file specifies the C++ container for a gaze event.

7.4 ELGazeSample.h File Reference

The file specifies the C++ container for a gaze sample.

#include "ELExports.hpp"
#include <cinttypes>

Classes

+ struct ELGazeSample

contains all information about the state of the eyes at a specific time

Namespaces

* elapi

namespace for C++ APl calls

Variables

+ EL_EXPORT const double ELInvalidValue

marker for an invalid double value

7.4.1 Detailed Description

The file specifies the C++ container for a gaze sample.

44

File Documentation

Index

ALREADY_BUSY
ELApi, 21, 23
ALREADY_RUNNING_DIFFERENT_FRAMERATE
ELApi, 22

calibrate
ELApi, 23
connect
ELApi, 24
CONNECTION_CLOSED
ELApi, 21, 22
connectRemote
ELApi, 24

DEVICE_CONNECTED
ELApi, 21
DEVICE_DISCONNECTED
ELApi, 21
DEVICE_MISSING
ELApi, 22
DeviceEvent
ELApi, 20

ELApi, 18
ALREADY_BUSY, 21, 23

ALREADY_RUNNING_DIFFERENT_FRAMERATE,

22
calibrate, 23
connect, 24
CONNECTION_CLOSED, 21, 22
connectRemote, 24
DEVICE_CONNECTED, 21
DEVICE_DISCONNECTED, 21
DEVICE_MISSING, 22
DeviceEvent, 20
ELApi, 23
FAILURE, 21-23
getAvailableScreens, 24
getNextDeviceEvent, 26
getNextEyelmage, 26
getNextGazeSample, 27
INVALID_CALIBRATION_MODE, 21
INVALID_FRAMERATE_MODE, 22
NOT_CALIBRATED, 23
NOT_CONNECTED, 21-23
NOT_FOUND, 22
NOT_TRACKING, 21, 23
registerDeviceEventListener, 28
registerEyelmageListener, 28
registerGazeEventListener, 28

registerGazeSampleListener, 29
REMOTE_CONNECTION, 23
requestServerList, 29
requestTracking, 29
ReturnCalibrate, 21
ReturnConnect, 21
ReturnNextData, 21
ReturnSetActiveScreen, 22
ReturnStart, 22
ReturnStreamEyelmages, 22
ReturnValidate, 23
SCREEN_CHANGED, 21
setActiveScreen, 30
streamEyelmages, 30
SUCCESS, 21-23
TIMEOUT, 22
TRACKING_STOPPED, 21
unrequestTracking, 30
validate, 31
VERSION_MISMATCH, 21
elapi, 15
ELApi.h, 41
ELApi::DeviceConfig, 17
ELApi::DeviceGeometry, 18
ELApi::ELDeviceEventCallback, 31
onDeviceEvent, 31
ELApi::ELEyelmageCallback, 33
onEyelmage, 33
ELApi::ELGazeEventCallback, 34
onFixationStart, 35
onFixationStop, 35
ELApi::ELGazeSampleCallback, 38
onGazeSample, 38
ELApi::ELValidationPointResult, 39
ELApi::ELValidationResult, 39
ELApi::ScreenConfig, 40
ELApi::Serverinfo, 40
ELEyelmage, 32
SIZE, 32
ELEyelmage.h, 42
ELFixationStart, 33
ELFixationStop, 34
ELGazeEvent.h, 42
ELGazeSample, 35
eyePositionLeftX, 36
eyePositionLeftY, 37
eyePositionLeftZ, 37
eyePositionRightX, 37
eyePositionRightY, 37

46

INDEX

eyePositionRightZ, 38
ELGazeSample.h, 43
eyePositionLeftX

ELGazeSample, 36
eyePositionLeftY

ELGazeSample, 37
eyePositionLeftZ

ELGazeSample, 37
eyePositionRightX

ELGazeSample, 37
eyePositionRightY

ELGazeSample, 37
eyePositionRightZ

ELGazeSample, 38

FAILURE
ELApi, 21-23

getAvailableScreens
ELApi, 24
getNextDeviceEvent
ELApi, 26
getNextEyelmage
ELApi, 26
getNextGazeSample
ELApi, 27

INVALID_CALIBRATION_MODE
ELApi, 21

INVALID_FRAMERATE_MODE
ELApi, 22

NOT_CALIBRATED
ELApi, 23
NOT_CONNECTED

ELApi, 21-23
NOT_FOUND

ELApi, 22
NOT_TRACKING

ELApi, 21, 23

onDeviceEvent
ELApi::ELDeviceEventCallback, 31
onEyelmage
ELApi::ELEyelmageCallback, 33
onFixationStart
ELApi::ELGazeEventCallback, 35
onFixationStop
ELApi::ELGazeEventCallback, 35
onGazeSample
ELApi::ELGazeSampleCallback, 38

registerDeviceEventListener
ELApi, 28

registerEyelmageListener
ELApi, 28

registerGazeEventListener
ELApi, 28

registerGazeSampleListener
ELApi, 29

REMOTE_CONNECTION

ELApi, 23
requestServerList

ELApi, 29
requestTracking

ELApi, 29
ReturnCalibrate

ELApi, 21
ReturnConnect

ELApi, 21
ReturnNextData

ELApi, 21
ReturnSetActiveScreen

ELApi, 22
ReturnStart

ELApi, 22
ReturnStreamEyelmages

ELApi, 22
ReturnValidate

ELApi, 23

SCREEN_CHANGED
ELApi, 21
setActiveScreen
ELApi, 30
SIZE
ELEyelmage, 32
streamEyelmages
ELApi, 30
SUCCESS
ELApi, 21-23

TIMEOUT
ELApi, 22
TRACKING_STOPPED
ELApi, 21

unrequestTracking
ELApi, 30

validate
ELApi, 31
VERSION_MISMATCH
ELApi, 21

	1 EyeLogic SDK Documentation (C++)
	1.1 Introduction
	1.1.1 About
	1.1.2 System Requirements

	1.2 Installation and Getting Started
	1.2.1 Download Software
	1.2.1.1 Compatibility

	1.2.2 Installing the EyeLogic SDK on Windows
	1.2.3 Getting Started with the Sample Code

	1.3 Concepts
	1.3.1 Server-Client Setup
	1.3.2 Set Up a Project for your Application
	1.3.3 Control Flow between API and server
	1.3.4 Dual PC Setup
	1.3.5 Example Program
	1.3.6 Gaze Samples
	1.3.7 Shipping Your Application

	1.4 Appendix
	1.4.1 License Agreement and Warranty for SDK

	1.5 About EyeLogic
	1.5.1 Contact and Support

	2 Namespace Index
	2.1 Namespace List

	3 Class Index
	3.1 Class List

	4 File Index
	4.1 File List

	5 Namespace Documentation
	5.1 elapi Namespace Reference
	5.1.1 Detailed Description

	6 Class Documentation
	6.1 ELApi::DeviceConfig Struct Reference
	6.1.1 Detailed Description

	6.2 ELApi::DeviceGeometry Struct Reference
	6.2.1 Detailed Description

	6.3 ELApi Class Reference
	6.3.1 Detailed Description
	6.3.2 Member Enumeration Documentation
	6.3.2.1 DeviceEvent
	6.3.2.2 ReturnCalibrate
	6.3.2.3 ReturnConnect
	6.3.2.4 ReturnNextData
	6.3.2.5 ReturnSetActiveScreen
	6.3.2.6 ReturnStart
	6.3.2.7 ReturnStreamEyeImages
	6.3.2.8 ReturnValidate

	6.3.3 Constructor & Destructor Documentation
	6.3.3.1 ELApi()

	6.3.4 Member Function Documentation
	6.3.4.1 calibrate()
	6.3.4.2 connect()
	6.3.4.3 connectRemote()
	6.3.4.4 getAvailableScreens()
	6.3.4.5 getNextDeviceEvent()
	6.3.4.6 getNextEyeImage()
	6.3.4.7 getNextGazeSample()
	6.3.4.8 registerDeviceEventListener()
	6.3.4.9 registerEyeImageListener()
	6.3.4.10 registerGazeEventListener()
	6.3.4.11 registerGazeSampleListener()
	6.3.4.12 requestServerList()
	6.3.4.13 requestTracking()
	6.3.4.14 setActiveScreen()
	6.3.4.15 streamEyeImages()
	6.3.4.16 unrequestTracking()
	6.3.4.17 validate()

	6.4 ELApi::ELDeviceEventCallback Class Reference
	6.4.1 Detailed Description
	6.4.2 Member Function Documentation
	6.4.2.1 onDeviceEvent()

	6.5 ELEyeImage Struct Reference
	6.5.1 Detailed Description
	6.5.2 Member Data Documentation
	6.5.2.1 SIZE

	6.6 ELApi::ELEyeImageCallback Class Reference
	6.6.1 Detailed Description
	6.6.2 Member Function Documentation
	6.6.2.1 onEyeImage()

	6.7 ELFixationStart Struct Reference
	6.7.1 Detailed Description

	6.8 ELFixationStop Struct Reference
	6.8.1 Detailed Description

	6.9 ELApi::ELGazeEventCallback Class Reference
	6.9.1 Detailed Description
	6.9.2 Member Function Documentation
	6.9.2.1 onFixationStart()
	6.9.2.2 onFixationStop()

	6.10 ELGazeSample Struct Reference
	6.10.1 Detailed Description
	6.10.2 Member Data Documentation
	6.10.2.1 eyePositionLeftX
	6.10.2.2 eyePositionLeftY
	6.10.2.3 eyePositionLeftZ
	6.10.2.4 eyePositionRightX
	6.10.2.5 eyePositionRightY
	6.10.2.6 eyePositionRightZ

	6.11 ELApi::ELGazeSampleCallback Class Reference
	6.11.1 Detailed Description
	6.11.2 Member Function Documentation
	6.11.2.1 onGazeSample()

	6.12 ELApi::ELValidationPointResult Struct Reference
	6.12.1 Detailed Description

	6.13 ELApi::ELValidationResult Struct Reference
	6.13.1 Detailed Description

	6.14 ELApi::ScreenConfig Struct Reference
	6.14.1 Detailed Description

	6.15 ELApi::ServerInfo Struct Reference
	6.15.1 Detailed Description

	7 File Documentation
	7.1 ELApi.h File Reference
	7.1.1 Detailed Description

	7.2 ELEyeImage.h File Reference
	7.2.1 Detailed Description

	7.3 ELGazeEvent.h File Reference
	7.3.1 Detailed Description

	7.4 ELGazeSample.h File Reference
	7.4.1 Detailed Description

	Index

