EyeLogic SDK

v1.1.15

March 2025

1 EyeLogic SDK Documentation (Python) 1

T4 Introduction L e e 1

T T ADOUL . . o o 1

1.1.2 System Requirements e 1

1.2 Installation and Getting Started L 1

1.2.1 Download Software 1

1.2.1.1 Compatibility 2

1.2.2 Installing the EyeLogic SDKon Windows 2

1.2.3 Getting Started with the Sample Code 2

1.3C0NCEPLS . . . L e 3

1.3.1 Server-Client Setup L e 3

1.3.2 Set Up a Project for your Application 3

1.3.3 Control Flow between APland server 3

1.3.4Dual PCSetup e 4

1.3.5 Example Program e 4

1.3.6 Gaze Samples L e 6

1.3.7 Shipping Your Application 6

1.4 AppendiX e 6

1.4.1 License Agreement and Warranty for SDKo oL 6

1.5 About Eyelogic e e e e e e 8

1.5.1 Contact and Support L e 8

2 Namespace Index 9
2.1 Packages e

3 Hierarchical Index 11

3.1 Class Hierarchy L . e 11

4 Class Index 13

4.1 Class List e e 13

5 Namespace Documentation 15

5.1 ELApi Namespace Reference e 15

5.1.1 Detailed Description e 16

6 Class Documentation 17

6.1 ELApi.DeviceConfig Class Reference i e 17

6.1.1 Detailed Description 17

6.1.2 Constructor & Destructor Documentation L oL 17

6.1.21 _init_ () - . . . e 18

6.2 ELApi.DeviceGeometry Class Reference 19

6.2.1 Detailed Description 19

6.2.2 Constructor & Destructor Documentation oL 19

B.22.1 NIL () o o e e e e e e 19

6.3 ELApi Class Reference e 20

6.3.1 Detailed Description L 21
6.3.2 Constructor & Destructor Documentation Lo 21
B.3.21 NIt () o ot e 21

6.3.3 Member Function Documentation 22
6.3.3.1calibrate() e e 22
6.3.3.2connect() e 22
6.3.3.3connectRemote() 22

6.3.3.4 getActiveScreen() e 23

6.3.3.5 getAvailableScreens() 23

6.3.3.6 getDeviceConfig() o 23

6.3.3.7 getNextDeviceEvent() L 24

6.3.3.8 getNextEyelmage() 24

6.3.3.9 getNextGazeSample() 25

6.3.3.10 registerDeviceEventCallback() 25

6.3.3.11 registerEyelmageCallback() 26

6.3.3.12 registerGazeSampleCallback() L 26

6.3.3.13 requestServerList() 26

6.3.3.14 requestTracking() o e 27

6.3.3.15 setActiveScreen() e e e 27

6.3.3.16 streamEyelmages() 28

6.3.3.17 unrequestTracking()« « . 28
6.3.3.18validate() 28

6.4 ELDeviceEvent Class Reference e 28
6.4.1 Detailed Description L 29

6.5 ELEyelmage Class Reference e 29
6.5.1 Detailed Description L 29

6.6 ELGazeSample Class Reference 29
6.6.1 Detailed Description 29

6.7 ELApi.ReturnCalibrate Class Reference 30
6.7.1 Detailed Description L 30

6.8 ELApi.ReturnConnect Class Reference i 31
6.8.1 Detailed Description 31
6.8.2 Member Data Documentation 31
6.8.2.1 VERSION_MISMATCH e e 31

6.9 ELApi.ReturnNextData Class Reference o 31
6.9.1 Detailed Description 32

6.10 ELApi.ReturnSetActiveScreen Class Reference 32
6.10.1 Detailed Description L 32

6.11 ELApi.ReturnStart Class Reference 32
6.11.1 Detailed Description 32

6.12 ELApi.ReturnStreamEyelmages Class Reference 33

6.12.1 Detailed Description 33

6.13 ELApi.ReturnValidate Class Reference 33
6.13.1 Detailed Description L e 33

6.14 ELApi.ScreenConfig Class Reference 34
6.14.1 Detailed Description L 34

6.15 ELApi.Serverinfo Class Reference o 34
6.15.1 Detailed Description 35

6.16 ELApi.ValidationPointResult Class Reference 35
6.16.1 Detailed Description 35

6.17 ELApi.ValidationResult Class Reference o 35
6.17.1 Detailed Description 36
6.17.2 Member Data Documentation 36
6.17.21 pointsData 36

Index 37

Chapter 1

EyeLogic SDK Documentation (Python)

1.1 Introduction

1.1.1 About

The Eyelogic Software Development Kit (SDK) is a free software package for building custom applications that use
an Eyelogic eye tracking device. It provides the ability to connect to your device from any custom application via an
Application Programming Interface (API). The EyelLogic SDK is available in the following programming languages
C++, C#, C, and Python. It can also be used with any other programming language that can import dynamic link
libraries (DLLs), such as Visual Basic or Matlab.

For each directly supported language, there is a short and simple example program to help you start developing
your first Eyelogic application.

This manual describes how to use the EyelLogic API for Python and gives a step-by-step introduction on how to
start with your own Python program.

1.1.2 System Requirements

Please refer to the Eyelogic Server documentation for system requirements and installation instructions.

The SDK has no additional requirements. It is built for Microsoft Windows (32 bit or 64 bit) only. The included
sample projects are written for Microsoft Visual Studio 2017 or newer. Other compilers are not supported at this
time.

1.2 Installation and Getting Started

1.2.1 Download Software

To use an Eyelogic eye tracking device from within your application, you need the Eyelogic Server and the
EyelLogic SDK. Check the download page for the latest version of both packages: https://www. <«
eyelogicsolutions.com/downloads/

https://www.eyelogicsolutions.com/downloads/
https://www.eyelogicsolutions.com/downloads/

2 EyeLogic SDK Documentation (Python)

1.2.1.1 Compatibility

The software is written to support backwards compatibility, i.e. updating the EyelLogic Server software will not break
support for your device, regardless of the model. This guide assumes that you are installing the latest version of
the Eyelogic Server. Please always update to the latest server version before reporting an error to the Eyelogic
Support.

On the other hand, it is not always necessary to update the SDK and APl DLLs. Since you as a programmer
would have to recompile your application with each SDK update, we have designed the SDK to allow the server to
communicate with older API versions. So when you ship your application, simply add the EyelLogic API DLLs of the
current version to your package. It will be compatible with both current and newer versions of the server.

See Shipping Your Application for a tutorial on how to ship your application.

1.2.2 Installing the EyeLogic SDK on Windows

The EyelLogic SDK does not need to be installed. It is shipped as a .zip file that simply needs to be extracted to any
directory on your hard drive. Make sure you have user rights to that directory, e.g. any directory within C:\Program
Files or similar is problematic as it requires admin rights to access those files every time you start your program. It
is recommended to use a local user directory.

Note: The SDK has to be installed on the same computer as the server. Please see the main server manual for
help on installing the server.

After extracting the .zip file, the directory contains one subfolder for each supported programming language. Open
the cpp folder, the content should be:

« eyelogic - contains the Eyelogic package which can be included in your Python script

» democlient.py - a sample script which demonstrates the use of the EyelLogic python API

1.2.3 Getting Started with the Sample Code

In the directory, into which you unpacked the SDK EyeLogicSDK, navigate to the sub-directory python. Open
the one of the .py files with your favorite python development environment.

If you have your python interpreter in the windows PATH, then you may start the demo application by just double-
clicking the .py file, e.g. democlient_main_sample_polling.py. Alternatively, open a console, change the actual
directory to EyeLogicSDK\python and enter the following line:

python democlient_main_sample_polling.py

Before running the application check that the EyelLogic Server is running (see the EyelLogic Server manual). If the
server is running, there will be an Eyelogic icon in the Windows system tray.

Note that your firewall might block the connection between your program and the server. In this case, add a rule
to your firewall to allow your application to open TCP/UDP ports to an application on localhost (for the windows
defender, just click "accept").

If you have reached this point, you have set up your Eyelogic SDK correctly. You are now ready to start developing
your own application. See the next section Concepts for the basic programming concepts and for a tutorial on how
to deploy and ship your application.

1.3 Concepts 3

1.3 Concepts

1.3.1 Server-Client Setup

The Eyelogic software consists of two main parts: The server and the API. The server is the neccessary driver
for your eye tracking device. It detects your device and handles the communication. The API is part of the EyelLogic
Standard Development Kit (SDK). It consists of .dll files that can be used by your application to connect to the
Eyelogic Server, start tracking and receive eye tracking data.

The server is designed to run continuously as a background process on your computer. When not actively tracking,
the server uses a negligible amount of your computer's resources. Once an Eyelogic eye tracking device is con-
nected, the Server application automatically detects it automatically and allows the user to set it up via the Server
configuration dialogue (see the Server icon in the Windows tray bar). If for some reason the server background
process is not running (the tray icon is missing), you can start the server manually from the Windows Start menu.

The APl is a set of .dll files that can be used by any custom program (called a user application). These
DLLs allow the user application to connect to the (running) server. Note that it the EyelLogic Server can run on the
same machine as the user application, or they can run on different PCs. See Dual PC Setup for how to set up the
setup with running the server and the user application running on different machines.

1.3.2 Set Up a Project for your Application

For an easy start to developing a new application, it is recommended that you copy the existing sample folder to
a new location (e.g. Eyelogic_SDK\python with all its contents). The sample source file already provides a fully
functional implementation. From this sample code, you can easily modify and extend the code to suit your individual
experiment.

Alternatively you can start a new python project from scratch. In that case be sure that your development environ-
ment is able to find the path for the EyelLogic python module (which is <Location of your Eyelogic_«
SDK>\python.

1.3.3 Control Flow between API and server

The usual control flow between the custom application/AP| and the server is characterised by the following steps:

—_

. initialize: Before calling any other function the API DLLs need initializing.
2. connect to server: Establish a connection to the server via TCP.

3. find eye tracking device: Obtain the information on connected eye trackers, otherwise wait until an eye
tracker is plugged in.

4. start tracking: Request tracking. If successful, the device will start tracking and the server sends Gaze«
Samples to the user application, see also Gaze Samples.

5. perform calibration: Request a calibration. A calibration point will appear on the screen, animated to move
across the screen. The user must fixate on this point until the calibration screen disappears. The system is
calibrated and ready for use when this process is successfully completed.

6. shut down: At the end of your experiment either stop the tracking or simply shutdown the API.
All information which is passed from the server to the user application is passed via asyncronous

callbacks. The application must register it's own implementations of these callback functions with the API
(see Example Program for a sample implementation).

Note that you need to calibrate to get valid gaze samples (see Gaze Samples). Any gaze samples reported before
the system is calibrated will not contain valid eye data.

4 EyeLogic SDK Documentation (Python)

1.3.4 Dual PC Setup

The Dual PC Setup is a special setup where the Eyelogic Server runs on a different computer than the user
application.

The most common use case for the Dual PC Setup would be the following. Running an experiment with an operator
constrolling the eye tracking device and a participant performing a task. The participant uses a different PC (which
displays the experiment) than the operator (who can control the eye tracker via the EyelLogic Server software).

The operator's computer (called the Operator PC) must have the Eyelogic driver software (the EyelLogic Server)
installed and running. The eye tracker is physically attached to a monitor that is connected to the participant's
computer (called the Experiment PC). The USB cable of the eye tracker is plugged into the USB port of the Operator
PC!

The operator can now use the server to detect the eye tracking device. On the Experiment PC, any custom applica-
tion that presents an experiment to the participant can use the EyelLogic API to remotely connect to the server. To
do this, the application should use the API calls:

1. requestServerList () to obtain a list of all EyelLogic servers in the local network (LAN/WLAN) which
are running and are configured to allow remote connections

2. connectRemote () to conntect to a specific server from that list

3. setActiveScreen () to set the screen connected to the Experiment PC as the active screen for eye
tracking (replacing the default main screen of the Operator PC)

Note, that a server must allow remote connections for it to be found. You can enable this in the settings of the server
window.

If the connection is successful, the client can operate as usual as if it were connected to a local server. See the
demo application "dualpc" demo application in the SDK for an example.

1.3.5 Example Program

In this section, the code of the Python example program is explained in some detail.

The file starts with an include section. It adds

from eyelogic.ELApi import =

in order to find all neccessary definitions of the EyelLogic API.

The next relevant part is the definition of the callback functions.:

@SampleCallback
def sampleCallback (sample: POINTER (ELGazeSample))

@EventCallback
def eventCallback (event: ELEvent)

1.3 Concepts 5

These are the callback functions which are invoked from the Eyelogic software whenever an event occurs. Those
functions are defined in the following lines. The example code simply prints the event to the console, but here you
may write your custom implementation.

Inthe __main__ section, the application implements its control flow. It consists of the following code lines:

api = ELApi ("Demo Client")
api.registerEventCallback (eventCallback)

This constructs a new instance of the ELApi class. The instanciation will automatically initialize the library and it will
also be automatically deinitialized when object api goes out of scope. The call to registerEventCallback
registers your own instance of the event callback with the EyeLogic APIl. From now on all incoming events will call
the eventCallback () method from the code above.

resultConnect = api.connect ()

Connects to the EyeLogic server. Check the return code to see if the connection was established successfully.

screenConfig = api.getActiveScreen|()

and

deviceConfig = api.getDeviceConfig/()

are called in order to obtain information about the active screen and the connected eye tracking device.

resultTracking = api.requestTracking(0)

Tells the device to start tracking and the Server to start sample processing. Parameter 0 specifies the frame rate
mode. If your device is capable of multiple frame rate modes (60Hz, 120Hz or 250Hz), you can specify a different
number. The list of available frame rate modes is part of the DeviceConfig and can be obtained by calling get«
DeviceConfig(). The first frame rate mode (DeviceConfig.frameRates[0]) is the default mode, which is usually the
highest available speed mode on your system.

resultCalibrate = api.calibrate (0)

Performs a calibration. This method blocks until the calibration is finished - i.e. completed or cancelled. The
parameter 0 indicates the type of calibration. A list of available calibration methods is part of the DeviceConfig and
can be obtained by calling api.getDeviceConfig().

The example program waits for 10 seconds and then closes the connection:

api.disconnect ()
api.registerGazeSampleCallback (None)
api.registerEventCallback (None)

The last two lines unregister the callback functions. Be sure to unregister them before destroying the API object.

6 EyeLogic SDK Documentation (Python)

1.3.6 Gaze Samples

Gaze samples are the most important data which is generated by the eye tracker. The eye tracker provides one
gaze sample per frame. Each sample contains information about the time of measurement, the position of the eyes,
the pupil radius and the point at which the user is lokking on a stimulus plane (usually a computer monitor).

1.3.7 Shipping Your Application

When you want to ship your application, be sure to include all relevant files so that it can run on different computers.
The EyeLogic functionality will only work on computers that have the EyelLogic Server installed. The installed server
must be at least be of the same version as the supplied API DLLs (a newer server version is acceptable).

In addition to the relevant files of your application, you need to ship the contents of the bin/ folder of your language
(typically including some .dll files). Place the contents of the bin/ folder in the working directory of your application
and ship them together.

1.4 Appendix

1.4.1 License Agreement and Warranty for SDK

IMPORTANT — PLEASE READ CAREFULLY:

The License Agreement is a legal agreement between you and EyelLogic GmbH and its affiliates (“EyelLogic”, “we”,
or “us”). This license agreement governs your use of the EyeLogic software and any third party software that may be
distributed therewith (collectively the “software”). EyelLogic agrees to license the software to you (personally and/or
on behalf of you employer) (collectively “you” or “your”) only if you accept all the terms contained in this license
agreement. By installing, using, copying, or distributing all or any portion of the software, you accept and agree to
be bound by all of the terms and conditions of this license agreement.

If you do not agree with any of the terms of this license agreement, do no install or use the software.

1. License Grant: Eyelogic grants you a revocable, nonexclusive, non-transferable, limited right to install and
use the application on a device owned and controlled by you, and to access and use the application on
such mobile device strictly in accordance with the terms and conditions of this licenses, the usage rules and
any service agreement associated with your device. The Software includes third party software and other
copyrighted material. Acknowledgements, licensing terms and disclaimers for such Third Party Software are
provided with the Software or contained in the Documentation, and your use of such Third Party Software is
governed by their respective terms (collectively “Related Agreements”).

2. Restriction on Use: You shall use the application strictly in accordance with the terms of the related agree-
ments and shall not:

(a) decompile, reverse engineer, disassemble, attempt to derive the source code of, or decrypt the applica-
tion,

(b) make any modification, adaption, improvement, enhancement, translation or derivative work from the
application,

(c) violate any applicable laws, rules or regulations in connection with your access or use of the application,

(d) remove, alter or obscure any proprietary notice (including any notice of copyright or trademark) of Eye«
Logic or its affiliates, partners, suppliers or the licensors of the application,

(e) use the application for any revenue generating endeavor, commercial enterprise or other purpose for
which it is not designed or intended,

1.4 Appendix 7

(f) make the application publicly available over a network or other environment permitting access or use by
others without the written permission of EyelLogic,

(9) use the application for creating a product, service or software that is, directly or indirectly, competitive
with or | any way substitute for any services, product or software offered by EyeLogic,

(h) use any proprietary information or interfaces of EyeLogic or other intellectual property of EyeLogic in the
design, development, manufacture, licensing or distribution of any applications, accessories or devices
for use with the application.

3. Termination: Eyelogic may, in its sole and absolute discretion, at any time and for any or no reason, suspend
or terminate this license and the rights afforded to you hereunder with or without prior notice. Furthermore, if
you fail to comply with any terms and conditions of this license, then this license and any rights afforded to you
hereunder shall terminate automatically, without any notice or other action by EyeLogic. Upon the termination
of this license, you shall cease all use of the application and uninstall the application.

4. Disclaimer of Warranties: You acknowledge and agree that the application is provided on an “as is” and
“as available” basis, and that your use of or reliance upon the application and any third party content and
services accessed thereby is at you sole risk and discretion. Eyelogic and its affiliates, partners suppliers
and licensors hereby disclaim any and all representations, warranties and guaranties regarding the application
and third party content and services, whether express, implied or statutory, and including without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, furthermore,
EyelLogic and its affiliates, partners, suppliers and licensors make no warranty that

(a) The application or third party content and services will meet your requirements,

(b) The application or third party content and services will be uninterrupted, accurate, reliable timely secure
or error-free,

(c) The quality of any products, services, information or other material accessed or obtained by you through
the application will be as represented or meet your expectations, or

(d) Any errors in the application or third party content and services will be corrected.

No advice or information whether oral or written, obtained by you from EyelLogic or from the application will
create any warranty not expressly made herein or create any liability on the part of Eyelogic.

If the licensee modifies or replaces any of the third party open source software included in the software, Eye«
Logic is not obligated to provide any updates, maintenance, warranty, technical or other support or services
for the resultant modified Software. You expressly acknowledge that any failure or damage to any hardware,
software or systems as a result of such modification to the open source components of the software is
excluded from the terms of any EyelLogic warranty.

5. Limitation of liability: Under no circumstances shall EyeLogic or its affiliates, partners, suppliers or licen-
sors be liable for any indirect, incidental, consequential, special or exemplary damages arising out of or in
connection with your access or use of or inability to access or use the application and any third party content
and services, whether or not the damages ere foreseeable and whether or not EyelLogic was advices of the
possibility of such damages. Without limiting the generality of the foregoing, EyelLogic’s aggregate liability to
you (whether under contract, tort, statue or otherwise) shall not exceed the amounts actually paid by licensee
for the licensed materials. The foregoing limitations will apply even if the above stated remedy fails of its
essential purpose.

6. Confidentiality: Licensed materials are proprietary to EyeLogic and constitute EyelLogic trade and business
secrets. The licensee shall maintain licensed materials in confidence and prevent their disclosure using at
least the same degree of care it uses for its own trade and business secrets, but in no event less than a
reasonable degree of care. The licensee shall not disclose licensed materials or any part thereof to anyone
for any purpose, other than to its employees and sub-contractors, if any, for the purpose of exercising the rights
expressly granted under this agreement, provided they have in writing agreed to confidentiality obligations at
least equivalent to the obligations stated herein. The foregoing does not apply to information that a. is or
becomes generally known or available to the public without any breach of the confidentiality obligation by
licensee, b. was already known to licensee prior to the disclosure by EyelLogic, or c. was rightfully acquired
by licensee from a third party without a breach of a confidentiality obligation towards EyelLogic. In case of a
dispute, the licensee has the burden of proof that the licensed materials and/or any portion thereof fall under
one of these exceptions. Should the licensee be legally compelled to disclose any licensed materials to a third
party, such as pursuant to a mandatory order by a court or authority or any comparable action, the licensee

8 EyeLogic SDK Documentation (Python)

shall, to the extent permitted under applicable law, inform Eyelogic without undue delay and undertake all
possible measures to safeguard secrecy.

1.5 About EyelLogic

Eyelogic is a manufacturer of high precision and high quality eye tracking devices, mainly for scientific and research
use cases. Eyelogic GmbH is a spin-off of the Free University of Berlin, faculty of mathematics and computer
science and has a vast experience in image processing and computer vision.

1.5.1 Contact and Support
For technical support questions contact us via mail at: support@eyelogicsolutions.com

EyelLogic GmbH

Schlesische Str. 28

10997 Berlin Germany

www: https://www.eyelogicsolutions.com

Copyright © EyeLogic GmbH

mailto:support@eyelogicsolutions.com
https://www.eyelogicsolutions.com

Chapter 2

Namespace Index

2.1 Packages

Here are the packages with brief descriptions (if available):

10

Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ELApi.DeviceConfig o e 17
ELApi.DeviceGeometry L 19
ELADI . . o 20
ELApi.ScreenConfig L e e e e e 34
ELApi.ServerInfo L e e 34
Structure
ELEyelmage 29
ELGazeSample e 29
ELApi.ValidationPointResult L 35
ELApi.ValidationResult L 35
Enum
ELApi.ReturnCalibrate e 30
ELApi.ReturnConnect e 31
ELApi.ReturnNextData e 31
ELApi.ReturnSetActiveScreen 32
ELApi.ReturnStart e 32
ELApi.ReturnStreamEyelmages L 33
ELApi.ReturnValidate L 33

ELDeviceEvent e e 28

12

Hierarchical Index

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ELApi.DeviceConfig

Configuration of the eye tracker
ELApi.DeviceGeometry

Geometric position of the device related to the active monitor
ELApi

Main class for communication with the EyelLogic server
ELDeviceEvent

Events coming fromthe eyetracker
ELEyelmage

Eyeimage at a specifictime
ELGazeSample

All information about the state of the eyes at a specifictme
ELApi.ReturnCalibrate

Returnvalues of calibrate() e
ELApi.ReturnConnect

Returnvalues of connect() e
ELApi.ReturnNextData

Return values of getNextDeviceEvent(), getNextGazeSample() and getNextEyelmage()
ELApi.ReturnSetActiveScreen

Return values of setActiveScreen() e
ELApi.ReturnStart

Return values of requestTracking() o
ELApi.ReturnStreamEyelmages

Return values of streamEyelmages() o
ELApi.ReturnValidate

Returnvalues of validate() e
ELApi.ScreenConfig

Configuration of the stimulus screen
ELApi.Serverinfo

Connection information for an EyelLogic server oL
ELApi.ValidationPointResult

ValidationPointResult
ELApi.ValidationResult

ValidationResult

14

Class Index

Chapter 5

Namespace Documentation

5.1 ELApi Namespace Reference

Classes

* class ELApi
main class for communication with the EyelLogic server
« class ELDeviceEvent
Events coming from the eye tracker.
 class ELEyelmage
contains an eye image at a specific time
+ class ELGazeSample

contains all information about the state of the eyes at a specific time

Functions

» def check_bool (result, func, args)

Variables

* GazeSampleCallback = CFUNCTYPE(None, POINTER(ELGazeSample))

callback function type, new gaze samples
» DeviceEventCallback = CFUNCTYPE(None, c_int32)

callback function type, event occurred
» EyelmageCallback = CFUNCTYPE(None, POINTER(ELEyelmage))

callback function type, new eye image
+ libname = os.path.join("x64", "ELCApiI")
» baseDir = os.path.dirname(os.path.abspath(__file_))
+ libnameGilobal = os.path.join(baseDir, libname + ".dlIl")
+ kernel32 = WinDLL('kernel32', use_last_error=True)
+ errcheck
« restype
+ argtypes
» c_libH = kernel32.LoadLibraryExW(libnameGilobal, None, 0x00000008)
+ c_lib = WinDLL(libname, handle=c_libH)
» ELlnvalidValue = ¢_double.in_dll(c_lib, "ELClInvalidValue").value

marker for an invalid double value

16 Namespace Documentation

5.1.1 Detailed Description

This module contains the python prototype declaration for all functions which are neccessary to control the Eyelogic
software from an API client.

Chapter 6

Class Documentation

6.1 ELApi.DeviceConfig Class Reference

configuration of the eye tracker

Public Member Functions

« def __init__ (self, deviceSerial)

constructor

Public Attributes

» deviceSerial

serial number
» deviceName

name of the device
» brandedName

name of the license owner
» isDemoDevice

whether the device is for DEMO use only, not for public sale
« frameRates

list of supported frame rates
+ calibrationMethods

list of supported calibration methods (number of shown points)

6.1.1 Detailed Description

configuration of the eye tracker

6.1.2 Constructor & Destructor Documentation

18 Class Documentation

6.1.2.1 __init_ ()

def __init__ (
self,

deviceSerial)

constructor

6.2 ELApi.DeviceGeometry Class Reference

Parameters

deviceSerial | serial number of the device

6.2 ELApi.DeviceGeometry Class Reference

geometric position of the device related to the active monitor

Public Member Functions

« def __init__ (self, mmBelowScreen, mmTrackerInFrontOfScreen)

constructor

Public Attributes

« mmBelowScreen

distance of eye tracker below the bottom line of the screen [mm]
* mmTrackerInFrontOfScreen

distance of front panel of the eye tracker in front of the screen[mm]

6.2.1 Detailed Description

geometric position of the device related to the active monitor

6.2.2 Constructor & Destructor Documentation

6.2.21 __init_ ()

def __init__ (
self,
mmBelowScreen,
mmTrackerInFrontOfScreen)
constructor
Parameters
mmBelowScreen distance of eye tracker below the bottom line of the screen [mm]

mmTrackerinFrontOfScreen | distance of front panel of the eye tracker in front of the screen[mm]

20

Class Documentation

6.3

ELApi Class Reference

main class for communication with the EyelLogic server

Classes

class DeviceConfig
configuration of the eye tracker
class DeviceGeometry

geometric position of the device related to the active monitor
class ReturnCalibrate

return values of calibrate()
class ReturnConnect

return values of connect(')
class ReturnNextData

return values of getNextDeviceEvent(), getNextGazeSample() and getNextEyelmage()
class ReturnSetActiveScreen

return values of setActiveScreen(')
class ReturnStart

return values of requestTracking()
class ReturnStreamEyelmages

return values of streamEyelmages()
class ReturnValidate

return values of validate()
class ScreenConfig

configuration of the stimulus screen
class Serverlnfo

connection information for an EyelLogic server
class ValidationPointResult

ValidationPointResult.
class ValidationResult

ValidationResult.

Public Member Functions

def __init__ (self, str clientName)
constructor

def __del (self)
destructor

def registerGazeSampleCallback (self, GazeSampleCallback sampleCallback)
registers sample callback listener

def registerEyelmageCallback (self, EyelmageCallback eyelmageCallback)
registers eye image callback listener

def registerDeviceEventCallback (self, DeviceEventCallback deviceEventCallback)
registers event callback listener

ReturnConnect connect (self)
initialize connection to the server (method is blocking until connection established).

ReturnConnect connectRemote (self, Serverinfo server)

initialize connection to a remote server (method is blocking until connection established)

6.3 ELApi Class Reference 21

6.3.1

[Serverinfo] requestServerList (self, c_int32 blockingDurationMS, c_int32 maxNumServer)

Ping all running EyelLogic servers in the local network and wait some time for their response.
def disconnect (self)

closes connection to the server
bool isConnected (self)

whether a connection to the server is established
ScreenConfig getActiveScreen (self)

get stimulus screen configuration
[ScreenConfig] getAvailableScreens (self)

Get a list of screens connected to the local machine.
ReturnSetActiveScreen setActiveScreen (self, str id, DeviceGeometry deviceGeometry)

Make a screen connected to this machine to the active screen.
DeviceConfig getDeviceConfig (self)

get configuration of actual eye tracker device
ReturnStreamEyelmages streamEyelmages (self, c_bool enable)

Enabled/disables eye image stream.
(ReturnNextData, ELDeviceEvent) getNextDeviceEvent (self, c¢_int timeoutMillis)

Obtains the next unread event or blocks until a new event occurs or the given timeout is reached.
(ReturnNextData, ELGazeSample) getNextGazeSample (self, c_int timeoutMillis)

Obtains the next unread gazeSample or blocks until a new GazeSample is received or the given timeout is reached.
(ReturnNextData, ELEyelmage) getNextEyelmage (self, c_int timeoutMillis)

Obtains the next unread eye image or blocks until a new eye image is received or the given timeout is reached.
ReturnStart requestTracking (self, c_int frameRateModelnd)

request tracking
def unrequestTracking (self)

unrequest tracking
def calibrate (self, c_int calibrationModelnd)

perform calibration (method is blocking until calibration finished)
def abortCalibValidation (self)

abort a running calibration / validation
(ReturnValidate, ValidationResult) validate (self)

perform calibration (method is blocking until calibration finished) - calibration must be performed prior

Detailed Description

main class for communication with the Eyelogic server

6.3.2 Constructor & Destructor Documentation

6.3.21 __init_ ()

def __init__ (

self,

str clientName)

constructor

22 Class Documentation

Parameters

clientName | string identifier of the client (shown in the server tool window), may be null

6.3.3 Member Function Documentation

6.3.3.1 calibrate()

def calibrate (
self,
c_int calibrationModeInd)
perform calibration (method is blocking until calibration finished)
Returns

success state

6.3.3.2 connect()

ReturnConnect connect (
self)

initialize connection to the server (method is blocking until connection established).
The connection is only established for a local server (running on this machine). For connections to a remote server,

See also

connectRemote().

Returns

success state

6.3.3.3 connectRemote()

ReturnConnect connectRemote (
self,

ServerInfo server)

initialize connection to a remote server (method is blocking until connection established)

6.3 ELApi Class Reference

23

Parameters

‘ server‘ Server to connect to

Returns

success state

See also

acquireServerList() to obtain IP address and port of a remote server

6.3.3.4 getActiveScreen()

ScreenConfig getActiveScreen (
self)

get stimulus screen configuration

Returns

screen configuration

6.3.3.5 getAvailableScreens()

[ScreenConfig] getAvailableScreens (
self)

Get a list of screens connected to the local machine.

If there are more screens than 'numScreenConfigs' found, then only the first 'numScreenConfigs' ones are filled.

Returns

list of screen configurations

6.3.3.6 getDeviceConfig()

DeviceConfig getDeviceConfig (
self)

get configuration of actual eye tracker device

Returns

device configuration

24 Class Documentation

6.3.3.7 getNextDeviceEvent()

(ReturnNextData, ELDeviceEvent) getNextDeviceEvent (
self,

c_int timeoutMillis)
Obtains the next unread event or blocks until a new event occurs or the given timeout is reached.

The last incoming event is buffered internally and can be obtained by calling this method in a consecutive order. If
there is no new event, the method blocks until an event occurs or the given timeout is reached. The method returns
SUCCESS if and only if a new event is provided which was not returned before. Therefore, by checking the return
value, you can assure to not handle any event twice.

If you want to catch events in a loop, be careful to not wait too long between the calls to this method. Otherwise,
you may miss events. If you want to be 100% sure to not miss any event, consider to use the ELEventCallback
mechanism.

See also

registerEventListener

Parameters

timeoutMillis | duration in milliseconds, method returns at the latest after this time. May be 0 if the method
should return immediatly.

Returns

first: new (yet unhandled) event. second: whether an event was received (SUCCESS) or the method termi-
nated without a new event

6.3.3.8 getNextEyelmage()

(ReturnNextData, ELEyelImage) getNextEyeImage (
self,

c_int timeoutMillis)
Obtains the next unread eye image or blocks until a new eye image is received or the given timeout is reached.

The last incoming eye image is buffered internally and can be obtained by calling this method in a consecutive order.
If there is no new eye image, the method blocks until an eye image is received or the given timeout is reached. The
method returns SUCCESS if and only if a new eye image is provided which was not returned before. Therefore, by
checking the return value, you can assure to not handle any eye image twice.

If you want to catch Eyelmages in a loop, be careful to not wait too long between the calls to this method (at least
once per frame). Otherwise, you may miss Eyelmages. If you want to be 100% sure to not miss any Eyelmages,
consider to use the ELEyelmagesCallback mechanism.

See also

registerEyelmagesListener

6.3 ELApi Class Reference 25

Parameters

timeoutMillis | duration in milliseconds, method returns at the latest after this time. May be 0 if the method
should return immediatly.

Returns

first: new (yet unhandled) Eyelmages. second: whether an event was received (SUCCESS)

6.3.3.9 getNextGazeSample()

(ReturnNextData, ELGazeSample) getNextGazeSample (
self,

c_int timeoutMillis)
Obtains the next unread gazeSample or blocks until a new GazeSample is received or the given timeout is reached.

The last incoming GazeSample is buffered internally and can be obtained by calling this method in a consecutive
order. If there is no new GazeSample, the method blocks until a GazeSample arrives or the given timeout is
reached. The method returns SUCCESS if and only if a new GazeSample is provided which was not returned
before. Therefore, by checking the return value, you can assure to not handle any GazeSample twice.

If you want to catch GazeSamples in a loop, be careful to not wait too long between the calls to this method (at

least once per frame). Otherwise, you may miss GazeSamples. If you want to be 100% sure to not miss any
GazeSample, consider to use the ELGazeSampleCallback mechanism.

See also

registerGazeSampleListener

Parameters

timeoutMillis | duration in milliseconds, method returns at the latest after this time. May be 0 if the method
should return immediatly.

Returns

first: new (yet unhandled) GazeSample. second: whether an event was received (SUCCESS) or the method
terminated without a new GazeSample

6.3.3.10 registerDeviceEventCallback()

def registerDeviceEventCallback (
self,
DeviceEventCallback deviceEventCallback)

registers event callback listener

26 Class Documentation

Parameters

eventCallback | this callback function is called on eye tracking events, may be null

6.3.3.11 registerEyelmageCallback()

def registerEyeImageCallback (
self,
EyeImageCallback eyeImageCallback)

registers eye image callback listener

Parameters

eyelmageCallback | this callback function is called on new eye images, may be null

6.3.3.12 registerGazeSampleCallback()

def registerGazeSampleCallback (
self,
GazeSampleCallback sampleCallback)

registers sample callback listener

Parameters

sampleCallback | this callback function is called on new gaze samples, may be null

6.3.3.13 requestServerList()

[ServerInfo] requestServerList (
self,
c_int32 blockingDurationMs,

c_1int32 maxNumServer)

Ping all running EyelLogic servers in the local network and wait some time for their response.

Parameters

blockingDurationMS | waiting duration in milliseconds. Method returns after this time, or if 'serverListLength'
many servers responded.

maxNumServer maximum number of server to be waited for

6.3 ELApi Class Reference

27

Returns

List of responding Eyelogic servers

6.3.3.14 requestTracking()

ReturnStart requestTracking (
self,
c_int frameRateModeInd)

request tracking

If tracking is not yet ongoing, tracking is started in the device. If tracking is already running (e.g. started from another
client) with the same frame-rate as requested, all gaze samples are reported to this client as well.

Parameters

‘ frameRateModelnd | index of the requested frame rate mode (0 .. #rameRateModes-1) ‘

Returns

success state

6.3.3.15 setActiveScreen()

ReturnSetActiveScreen setActiveScreen (
self,

str id,

DeviceGeometry deviceGeometry)

Make a screen connected to this machine to the active screen.

Recording is from now on performed on the new active screen. Remember to perform a calibration on the new
screen, otherwise it remains in an uncalibrated state.

Parameters
id ID of the new active screen on this machine (even works if the connection to the server is
remote). If null, the primary screen of this machine is set as active.
deviceGeometry | Geometry of the device which is mounted to the screen.
Returns

success/error code

28 Class Documentation

6.3.3.16 streamEyelmages()

ReturnStreamEyeImages streamEyelImages (
self,

c_bool enable)
Enabled/disables eye image stream.

If enabled, eye images are received from eye image listeners,

See also
registerEyelmageListener() and

getNextEyelmage(). Note, that enabling eye images can lead to noticable CPU load and a loss of gaze
samples. Always disable it before running your experiment. Eye images can not be received via remote
connections.

6.3.3.17 unrequestTracking()

def unrequestTracking (
self)

unrequest tracking
Note that the tracking device may continue if other processes still request tracking. Check the Eyelogic server

window to observe the actual state.

6.3.3.18 validate()

(ReturnvValidate, ValidationResult) wvalidate (
self)

perform calibration (method is blocking until calibration finished) - calibration must be performed prior

Returns

whether was completed successfully (SUCCESS) or error value and an instance of ValidationResult. Upon
SUCCESS ValidationResult.pointsData will contain each stimulus point's validation data, empty list otherwise.

6.4 ELDeviceEvent Class Reference

Events coming from the eye tracker.

6.5 ELEyelmage Class Reference 29

Static Public Attributes

+ int SCREEN_CHANGED =0

screen or resolution has changed
+ int CONNECTION_CLOSED =1

connection to server closed
* int DEVICE_CONNECTED =2

a new eye tracker has connected
» int DEVICE_DISCONNECTED =3

the actual eye tracker has disconnected
* int TRACKING_STOPPED =4

tracking stopped

6.4.1 Detailed Description

Events coming from the eye tracker.

6.5 ELEyelmage Class Reference

contains an eye image at a specific time

6.5.1 Detailed Description

contains an eye image at a specific time

6.6 ELGazeSample Class Reference

contains all information about the state of the eyes at a specific time

6.6.1 Detailed Description

contains all information about the state of the eyes at a specific time

Available members:

« timestampMicroSec: timepoint when data was acquired in microseconds after EPOCH
« index: increasing GazeSample index

» porRawX: X coordinate of binocular point of regard on the stimulus plane, check porRawX != InvalidValue
before using it.

» porRawY: Y coordinate of binocular point of regard on the stimulus plane, check porRawX != InvalidValue
also before using porRawy.

« porFilteredX: X coordinate of filtered binocular point of regard on the stimulus plane, check porFilteredX =
InvalidValue before using it.

30

Class Documentation

6.7

porFilteredY: Y coordinate of filtered binocular point of regard on the stimulus plane, also check porFilteredX
I= InvalidValue before using porFilteredY.

porLeftX: X coordinate of monocular point of regard of the left eye, check porLeftX |= InvalidValue before
using it.

porLeftY: Y coordinate of monocular point of regard of the left eye, also check porLeftX |= InvalidValue before
using porLeftY.

eyePositionLeftX: position of the left eye in device coordinates, unit is mm More...
eyePositionLeftY: position of the left eye in device coordinates, unit is mm More...
eyePositionLeftZ: position of the left eye in device coordinates, unit is mm More...
pupilRadiusLeft: radius of the left pupil in mm

porRightX: X coordinate of monocular point of regard of the right eye, check porRightX != InvalidValue before
using it.

porRightY: Y coordinate of monocular point of regard of the right eye, also check porRightX != InvalidValue
before using porRightY.

eyePositionRightX: position of the right eye in device coordinates, unit is mm: More...
eyePositionRightY: position of the right eye in device coordinates, unit is mm: More...
eyePositionRightZ: position of the right eye in device coordinates, unit is mm: More...

pupilRadiusRight: radius of the right pupil in mm

ELApi.ReturnCalibrate Class Reference

return values of calibrate()

Static Public Attributes

6.7.1

int SUCCESS =0

calibration successful
int NOT_CONNECTED =1

cannot calibrate: not connected to the server
int NOT_TRACKING =2

cannot calibrate: no device found or tracking not started
int INVALID_CALIBRATION_MODE =3

cannot start calibration: calibration mode is invalid or not supported
int ALREADY_BUSY =4

cannot start calibration: calibration or validation is already in progress
int FAILURE =5

calibration was not successful or aborted

Detailed Description

return values of calibrate()

6.8 ELApi.ReturnConnect Class Reference

31

6.8 ELApi.ReturnConnect Class Reference

return values of connect()

Static Public Attributes

int SUCCESS =0

connection successully established
e int NOT_INITED =1

connection failed: library needs to be initialized first (constructor call missing)
+ int VERSION_MISMATCH =2

connection failed: APl is build on a newer version than the server.
e int TIMEOUT =3

connection failed: the server can not be found or is not responding

6.8.1 Detailed Description

return values of connect()

6.8.2 Member Data Documentation

6.8.2.1 VERSION_MISMATCH

int VERSION_MISMATCH = 2 [static]
connection failed: APl is build on a newer version than the server.

Update the EyelogicServer to the newest version.

6.9 ELApi.ReturnNextData Class Reference

return values of getNextDeviceEvent(), getNextGazeSample() and getNextEyelmage()

Static Public Attributes

» int SUCCESS =0

new event or new GazeSample received
e int NOT_INITED =1

library needs to be initialized first
* int TIMEOUT =2

timeout reached, no new event/GazeSample received
* int CONNECTION _CLOSED =3

connection to server closed, no new event/GazeSample received

32 Class Documentation

6.9.1 Detailed Description

return values of getNextDeviceEvent(), getNextGazeSample() and getNextEyelmage()

6.10 ELApi.ReturnSetActiveScreen Class Reference

return values of setActiveScreen()

Static Public Attributes

+ intSUCCESS =0

active screen was set
+ int NOT_FOUND =1

specified screen name was not found as a name of an available monitor
* int FAILURE =2

active screen could not be changed

6.10.1 Detailed Description

return values of setActiveScreen()

6.11 ELApi.ReturnStart Class Reference

return values of requestTracking()

Static Public Attributes

+ int SUCCESS =0

start tracking successful
e int NOT_CONNECTED =1

not connected to the server
« int DEVICE_MISSING =2

cannot start tracking: no device found
* int INVALID_FRAMERATE_MODE =3

cannot start tracking: framerate mode is invalid or not supported
* int ALREADY_RUNNING_DIFFERENT FRAMERATE =4

tracking already ongoing, but frame rate mode is different
e int FAILURE =5

some general failure occurred

6.11.1 Detailed Description

return values of requestTracking()

6.12 ELApi.ReturnStreamEyelmages Class Reference

33

6.12 ELApi.ReturnStreamEyelmages Class Reference

return values of streamEyelmages()

Static Public Attributes

int SUCCESS =0

setting streaming of eye images was successful
* int NOT_CONNECTED =1

failed, not connected to the server
* int REMOTE_CONNECTION =2

cannot stream eye images when connection to the server is a remote connection
« int FAILURE =3

failure when trying to set eye image stream

6.12.1 Detailed Description

return values of streamEyelmages()

6.13 ELApi.ReturnValidate Class Reference

return values of validate()

Static Public Attributes

int SUCCESS =0

start validation successful
e int NOT_CONNECTED =1

cannot validate: not connected to the server
* int NOT_TRACKING =2

cannot validate: no device found or tracking not started
* int NOT_CALIBRATED =3

cannot start validation: validation mode is invalid or not supported
« int ALREADY_BUSY =4

cannot start validation: calibration or validation is already in progress
* int FAILURE =5

validation failure

6.13.1 Detailed Description

return values of validate()

34 Class Documentation

6.14 ELApi.ScreenConfig Class Reference

configuration of the stimulus screen

Public Member Functions

o def __init__ (self)

constructor

Public Attributes

+ localMachine

whether this screen is connected to the local PC
e id

ID of the screen.
* name

Name of the screen.
* resolutionX

screen X resolution [px]
* resolutionY

screen Y resolution [px]
» physicalSizeX_mm

horizontal physical dimension of the screen [mm]
» physicalSizeY_mm

vertical physical dimension of the screen [mm]

6.14.1 Detailed Description

configuration of the stimulus screen

6.15 ELApi.Serverinfo Class Reference

connection information for an EyeLogic server

Public Member Functions

« def __init__ (self)

constructor

Public Attributes

. |p
IP address of server as 0-terminated string.
* port

port of server

6.16 ELApi.ValidationPointResult Class Reference 35

6.15.1 Detailed Description

connection information for an Eyelogic server

6.16 ELApi.ValidationPointResult Class Reference

ValidationPointResult.

Public Member Functions

. def__init__(self)

Public Attributes

« validationPointPxX

ELInvalidValue or x-coordinate of stimulus point position.
« validationPointPxY

ELInvalidValue or y-coordinate of stimulus point position.
* meanDeviationLeftPx

ELInvalidValue or mean deviation between left eye POR and stimulus position in [px] in the stimulus plane.
« meanDeviationLeftDeg

ELInvalidValue or mean deviation of left eye gaze direction in [deg] in the 3-D world system.
» meanDeviationRightPx

ELInvalidValue or mean deviation between right eye POR and stimulus position in [px] in the stimulus plane.
» meanDeviationRightDeg

ELInvalidValue or mean deviation of right eye gaze direction in [deg] in the 3-D world system.

6.16.1 Detailed Description

ValidationPointResult.

Holds the results of the validation (total deviation between true point position and calculated POR of the left and
right eye POR in [px] and [deg]) of the validation point at position (validationPointPxX, validationPointPxY) [px].

The stimulus point position and deviation [px] are given in the 2D stimulus coordinate system originating in the top
left corner of the stimulus.

The deviation [deg] corresponds to the total angular deviation between the measured gaze direction from the ground
truth gaze direction as determined according to the measured eye position.

Note: meanDeviation* data fields may be ELInvalidValue. The pairs meanDeviationLeftDeg/-Px and mean«
DeviationRightDeg-/Px are always either both valid or both ELInvalidValue.

6.17 ELApi.ValidationResult Class Reference

ValidationResult.

36 Class Documentation

Public Member Functions

« def __init__ (self)

Public Attributes

 pointsData

Number of validation points.

6.17.1 Detailed Description

ValidationResult.

Contains one a list of ValidationPointResults - one per validation stimulus point of the performed valdation.

6.17.2 Member Data Documentation

6.17.2.1 pointsData

pointsData
Number of validation points.

The following arrays will hold twice this amount in valid (x, y)-tuple data points

Index

_init__
ELApi, 21
ELApi.DeviceConfig, 17
ELApi.DeviceGeometry, 19

calibrate

ELApi, 22
connect

ELApi, 22
connectRemote

ELApi, 22

ELApi, 15, 20
_init__, 21
calibrate, 22
connect, 22
connectRemote, 22
getActiveScreen, 23
getAvailableScreens, 23
getDeviceConfig, 23
getNextDeviceEvent, 23
getNextEyelmage, 24
getNextGazeSample, 25
registerDeviceEventCallback, 25
registerEyelmageCallback, 26
registerGazeSampleCallback, 26
requestServerList, 26
requestTracking, 27
setActiveScreen, 27
streamEyelmages, 27
unrequestTracking, 28
validate, 28
ELApi.DeviceConfig, 17
_init__, 17
ELApi.DeviceGeometry, 19
init,19
ELApi.ReturnCalibrate, 30
ELApi.ReturnConnect, 31
VERSION_MISMATCH, 31
ELApi.ReturnNextData, 31
ELApi.ReturnSetActiveScreen, 32
ELApi.ReturnStart, 32
ELApi.ReturnStreamEyelmages, 33
ELApi.ReturnValidate, 33
ELApi.ScreenConfig, 34
ELApi.Serverinfo, 34
ELApi.ValidationPointResult, 35
ELApi.ValidationResult, 35
pointsData, 36
ELDeviceEvent, 28

ELEyelmage, 29
ELGazeSample, 29

getActiveScreen
ELApi, 23
getAvailableScreens
ELApi, 23
getDeviceConfig
ELApi, 23
getNextDeviceEvent
ELApi, 23
getNextEyelmage
ELApi, 24
getNextGazeSample
ELApi, 25

pointsData
ELApi.ValidationResult, 36

registerDeviceEventCallback
ELApi, 25
registerEyelmageCallback
ELApi, 26
registerGazeSampleCallback
ELApi, 26
requestServerList
ELApi, 26
requestTracking
ELApi, 27

setActiveScreen
ELApi, 27

streamEyelmages
ELApi, 27

unrequestTracking
ELApi, 28

validate
ELApi, 28
VERSION_MISMATCH
ELApi.ReturnConnect, 31

	1 EyeLogic SDK Documentation (Python)
	1.1 Introduction
	1.1.1 About
	1.1.2 System Requirements

	1.2 Installation and Getting Started
	1.2.1 Download Software
	1.2.1.1 Compatibility

	1.2.2 Installing the EyeLogic SDK on Windows
	1.2.3 Getting Started with the Sample Code

	1.3 Concepts
	1.3.1 Server-Client Setup
	1.3.2 Set Up a Project for your Application
	1.3.3 Control Flow between API and server
	1.3.4 Dual PC Setup
	1.3.5 Example Program
	1.3.6 Gaze Samples
	1.3.7 Shipping Your Application

	1.4 Appendix
	1.4.1 License Agreement and Warranty for SDK

	1.5 About EyeLogic
	1.5.1 Contact and Support

	2 Namespace Index
	2.1 Packages

	3 Hierarchical Index
	3.1 Class Hierarchy

	4 Class Index
	4.1 Class List

	5 Namespace Documentation
	5.1 ELApi Namespace Reference
	5.1.1 Detailed Description

	6 Class Documentation
	6.1 ELApi.DeviceConfig Class Reference
	6.1.1 Detailed Description
	6.1.2 Constructor & Destructor Documentation
	6.1.2.1 __init__()

	6.2 ELApi.DeviceGeometry Class Reference
	6.2.1 Detailed Description
	6.2.2 Constructor & Destructor Documentation
	6.2.2.1 __init__()

	6.3 ELApi Class Reference
	6.3.1 Detailed Description
	6.3.2 Constructor & Destructor Documentation
	6.3.2.1 __init__()

	6.3.3 Member Function Documentation
	6.3.3.1 calibrate()
	6.3.3.2 connect()
	6.3.3.3 connectRemote()
	6.3.3.4 getActiveScreen()
	6.3.3.5 getAvailableScreens()
	6.3.3.6 getDeviceConfig()
	6.3.3.7 getNextDeviceEvent()
	6.3.3.8 getNextEyeImage()
	6.3.3.9 getNextGazeSample()
	6.3.3.10 registerDeviceEventCallback()
	6.3.3.11 registerEyeImageCallback()
	6.3.3.12 registerGazeSampleCallback()
	6.3.3.13 requestServerList()
	6.3.3.14 requestTracking()
	6.3.3.15 setActiveScreen()
	6.3.3.16 streamEyeImages()
	6.3.3.17 unrequestTracking()
	6.3.3.18 validate()

	6.4 ELDeviceEvent Class Reference
	6.4.1 Detailed Description

	6.5 ELEyeImage Class Reference
	6.5.1 Detailed Description

	6.6 ELGazeSample Class Reference
	6.6.1 Detailed Description

	6.7 ELApi.ReturnCalibrate Class Reference
	6.7.1 Detailed Description

	6.8 ELApi.ReturnConnect Class Reference
	6.8.1 Detailed Description
	6.8.2 Member Data Documentation
	6.8.2.1 VERSION_MISMATCH

	6.9 ELApi.ReturnNextData Class Reference
	6.9.1 Detailed Description

	6.10 ELApi.ReturnSetActiveScreen Class Reference
	6.10.1 Detailed Description

	6.11 ELApi.ReturnStart Class Reference
	6.11.1 Detailed Description

	6.12 ELApi.ReturnStreamEyeImages Class Reference
	6.12.1 Detailed Description

	6.13 ELApi.ReturnValidate Class Reference
	6.13.1 Detailed Description

	6.14 ELApi.ScreenConfig Class Reference
	6.14.1 Detailed Description

	6.15 ELApi.ServerInfo Class Reference
	6.15.1 Detailed Description

	6.16 ELApi.ValidationPointResult Class Reference
	6.16.1 Detailed Description

	6.17 ELApi.ValidationResult Class Reference
	6.17.1 Detailed Description
	6.17.2 Member Data Documentation
	6.17.2.1 pointsData

	Index

